Programmable Millifluidic Platform Integrating Automatic Electromembrane Extraction Cleanup and In-Line Electrochemical Detection: A Proof of Concept
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36200176
PubMed Central
PMC9623577
DOI
10.1021/acssensors.2c01648
Knihovny.cz E-zdroje
- Klíčová slova
- automation, diclofenac, electrochemical sensing, nonsupported electrically driven extraction, sequential injection analysis,
- MeSH
- diklofenak * MeSH
- lidé MeSH
- membrány umělé * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- diklofenak * MeSH
- membrány umělé * MeSH
A fully automatic millifluidic sensing platform coupling in-line nonsupported microelectromembrane extraction (μ-EME) with electrochemical detection (ECD) is herein proposed for the first time. Exploiting the features of the second generation of flow analysis, termed sequential injection (SI), the smart integration of SI and μ-EME-ECD enables (i) the repeatable formation of microvolumes of phases for the extraction step in a membrane-less (nonsupported) arrangement, (ii) diverting the acceptor plug to the ECD sensing device, (iii) in-line pH adjustment before the detection step, and (iv) washing of the platform for efficient removal of remnants of wetting film solvent, all entirely unsupervised. The real-life applicability of the miniaturized sensing system is studied for in-line sample cleanup and ECD of diclofenac as a model analyte after μ-EME of urine as a complex biological sample. A comprehensive study of the merits and the limitations of μ-EME solvents on ECD is presented. Under the optimal experimental conditions using 14 μL of unprocessed urine as the donor, 14 μL of 1-nonanol as the organic phase, and 14 μL of 25 mM NaOH as the acceptor in a 2.4 mm ID PTFE tubing, an extraction voltage of 250 V, and an extraction time of 10 min, an absolute (mass) extraction recovery of 48% of diclofenac in urine is obtained. The proposed flow-through system is proven to efficiently remove the interfering effect of predominantly occurring organic species in human urine on ECD with RSD% less than 8.6%.
Zobrazit více v PubMed
Poole C.; Mester Z.; Miró M.; Pedersen-Bjergaard S.; Pawliszyn J. Extraction for analytical scale sample preparation (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 649–687. 10.1515/pac-2015-0705. DOI
Alahmad W.; Sahragard A.; Varanusupakul P. Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosens. Bioelectron. 2021, 194, 11357410.1016/j.bios.2021.113574. PubMed DOI
Drouin N.; Kubáň P.; Rudaz S.; Pedersen-Bjergaard S.; Schappler J. Electromembrane extraction: Overview of the last decade. TrAC, Trends Anal. Chem. 2019, 113, 357–363. 10.1016/j.trac.2018.10.024. DOI
Huang C.; Chen Z.; Gjelstad A.; Pedersen-Bjergaard S.; Shen X. Electromembrane extraction. TrAC, Trends Anal. Chem. 2017, 95, 47–56. 10.1016/j.trac.2017.07.027. DOI
Lee J.; Lee H. K.; Rasmussen K. E.; Pedersen-Bjergaard S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: A review. Anal. Chim. Acta 2008, 624, 253–268. 10.1016/j.aca.2008.06.050. PubMed DOI
Grau J.; Azorín C.; Benedé J. L.; Chisvert A.; Salvador A. Use of green alternative solvents in dispersive liquid-liquid microextraction: A review. J. Sep. Sci. 2022, 45, 210–222. 10.1002/jssc.202100609. PubMed DOI
Shang Q.; Mei H.; Huang C.; Shen X. Fundamentals, operations and applications of electromembrane extraction: An overview of reviews. Microchem. J. 2022, 181, 10775110.1016/j.microc.2022.107751. DOI
Wan L.; Lin B.; Zhu R.; Huang C.; Pedersen-Bjergaard S.; Shen X. Liquid-phase microextraction or electromembrane extraction?. Anal. Chem. 2019, 91, 8267–8273. 10.1021/acs.analchem.9b00946. PubMed DOI
Gjelstad A.; Andersen T. M.; Rasmussen K. E.; Pedersen-Bjergaard S. Microextraction across supported liquid membranes forced by pH gradients and electrical fields. J. Chromatogr. A 2007, 1157, 38–45. 10.1016/j.chroma.2007.05.007. PubMed DOI
Zarghampour F.; Yamini Y.; Baharfar M.; Faraji M. Simultaneous extraction of acidic and basic drugs via on-chip electromembrane extraction using a single-compartment microfluidic device. Analyst 2019, 144, 1159–1166. 10.1039/C8AN01668B. PubMed DOI
Hylton K.; Mitra S. A microfluidic hollow fiber membrane extractor for arsenic(V) detection. Anal. Chim. Acta 2008, 607, 45–49. 10.1016/j.aca.2007.11.039. PubMed DOI
Nitiyanontakit S.; Varanusupakul P.; Miró M. Hybrid flow analyzer for automatic hollow-fiber-assisted ionic liquid-based liquid-phase microextraction with in-line membrane regeneration. Anal. Bioanal. Chem. 2013, 405, 3279–3288. 10.1007/s00216-013-6744-1. PubMed DOI
Larsson N.; Petersson E.; Rylander M.; Jönsson J. Å. Continuous flow hollow fiber liquid-phase microextraction and monitoring of NSAID pharmaceuticals in a sewage treatment plant effluent. Anal. Methods 2009, 1, 59–67. 10.1039/b9ay00015a. PubMed DOI
Petersen N. J.; Jensen H.; Hansen S. H.; Foss S. T.; Snakenborg D.; Pedersen-Bjergaard S. On-chip electro membrane extraction. Microfluid. Nanofluid. 2010, 9, 881–888. 10.1007/s10404-010-0603-6. PubMed DOI
Ramos-Payán M.; Murillo E. S.; Coello J.; Bello-López M. A. A comprehensive study of a new versatile microchip device based liquid phase microextraction for stopped-flow and double-flow conditions. J. Chromatogr. A 2018, 1556, 29–36. 10.1016/j.chroma.2018.04.051. PubMed DOI
Hansen E. H.; Miró M. How flow-injection analysis (FIA) over the past 25 years has changed our way of performing chemical analyses. TrAC, Trends Anal. Chem. 2007, 26, 18–26. 10.1016/j.trac.2006.07.010. DOI
Miró M.; Hansen E. H. Recent advances and future prospects of mesofluidic Lab-on-a-Valve platforms in analytical sciences–A critical review. Anal. Chim. Acta 2012, 750, 3–15. 10.1016/j.aca.2012.03.049. PubMed DOI
Horstkotte B.; Miró M.; Solich P. Where are modern flow techniques heading to?. Anal. Bioanal. Chem. 2018, 410, 6361–6370. 10.1007/s00216-018-1285-2. PubMed DOI
Worawit C.; Cocovi-Solberg D. J.; Varanusupakul P.; Miró M. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: a proof of concept study. Talanta 2018, 185, 611–619. 10.1016/j.talanta.2018.04.007. PubMed DOI
Carrasco-Correa E. J.; Kubáň P.; Cocovi-Solberg D. J.; Miró M. Fully automated electric-field-driven liquid phase microextraction system with renewable organic membrane as a front end to high performance liquid chromatography. Anal. Chem. 2019, 91, 10808–10815. 10.1021/acs.analchem.9b02453. PubMed DOI
Fernández E.; Vidal L.; Martín-Yerga D.; Blanco M. D. C.; Canals A.; Costa-García A. Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction for determination of mercury in water samples. Talanta 2015, 135, 34–40. 10.1016/j.talanta.2014.11.069. PubMed DOI
Ahmar H.; Shahvandi S. K. Determination of 4-Nitrobenzaldehyde in Water Samples by Combination of Switchable Solvent Based Microextraction and Electrochemical Detection on MWCNTs Modified Electrode. Electroanalysis 2019, 31, 1238–1244. 10.1002/elan.201800451. DOI
Shahraki S.; Ahmar H.; Nejati-Yazdinejad M. Electrochemical determination of nitrazepam by switchable solvent based liquid-liquid microextraction combined with differential pulse voltammetry. Microchem. J. 2018, 142, 229–235. 10.1016/j.microc.2018.07.003. DOI
Hrdlička V.; Barek J.; Navrátil T. Differential pulse voltammetric determination of homovanillic acid as a tumor biomarker in human urine after hollow fiber-based liquid-phase microextraction. Talanta 2021, 221, 12159410.1016/j.talanta.2020.121594. PubMed DOI
Nomngongo P. N.; Ngila J. C. Hollow fiber solid phase microextraction coupled to square wave anodic stripping voltammetry for selective preconcentration and determination of trace levels of mercury in liquid fuel samples. J. Iran. Chem. Soc 2015, 12, 2141–2147. 10.1007/s13738-015-0691-z. DOI
Mofidi Z.; Norouzi P.; Sajadian M.; Ganjali M. R. Simultaneous extraction and determination of trace amounts of diclofenac from whole blood using supported liquid membrane microextraction and fast Fourier transform voltammetry. J. Sep. Sci. 2018, 41, 1644–1650. PubMed
Ahmar H.; Tabani H.; Koruni M. H.; Davarani S. S. H.; Fakhari A. R. A new platform for sensing urinary morphine based on carrier assisted electromembrane extraction followed by adsorptive stripping voltammetric detection on screen-printed electrode. Biosens. Bioelectron. 2014, 54, 189–194. 10.1016/j.bios.2013.10.035. PubMed DOI
Tahmasebi Z.; Davarani S. S. H.; Asgharinezhad A. A. Highly efficient electrochemical determination of propylthiouracil in urine samples after selective electromembrane extraction by copper nanoparticles-decorated hollow fibers. Biosens. Bioelectron. 2018, 114, 66–71. 10.1016/j.bios.2018.05.014. PubMed DOI
Norouzi P.; Akmal M. R.; Mofidi Z.; Larijani B.; Ganjali M. R.; Ebrahimi M. Low-voltage online stimulated microextraction of glibenclamide from whole blood. Microchem. J. 2019, 148, 759–766. 10.1016/j.microc.2019.05.009. DOI
Mofidi Z.; Norouzi P.; Larijani B.; Seidi S.; Ganjali M. R.; Morshedi M. Simultaneous determination and extraction of ultra- trace amounts of estradiol valerate from whole blood using FFT square wave voltammetry and low-voltage electrically enhanced microextraction techniques. J. Electroanal. Chem. 2018, 813, 83–91. 10.1016/j.jelechem.2018.01.048. DOI
Mofidi Z.; Norouzi P.; Seidi S.; Ganjali M. R. Determination of diclofenac using electromembrane extraction coupled with stripping FFT continuous cyclic voltammetry. Anal. Chim. Acta 2017, 972, 38–45. 10.1016/j.aca.2017.04.011. PubMed DOI
Andreasen S. Z.; Sanger K.; Jendresen C. B.; Nielsen A. T.; Emnéus J.; Boisen A.; Zor K. Extraction, enrichment, and in situ electrochemical detection on lab-on-a-disc: monitoring the production of a bacterial secondary metabolite. ACS Sens. 2019, 4, 398–405. 10.1021/acssensors.8b01277. PubMed DOI
Kubáň P.; Boček P. Preconcentration in micro-electromembrane extraction across free liquid membranes. Anal. Chim. Acta 2014, 848, 43–50. 10.1016/j.aca.2014.07.037. PubMed DOI
Kubáň P. Salt removal from microliter sample volumes by multiple phase microelectromembrane extractions across free liquid membranes. Anal. Chem. 2017, 89, 8476–8483. 10.1021/acs.analchem.7b02017. PubMed DOI
Cocovi-Solberg D. J.; Miró M.; et al. CocoSoft: educational software for automation in the analytical chemistry laboratory. Anal. Bioanal. Chem. 2015, 21, 6227–6233. PubMed
Sasal A.; Tyszczuk-Rotko K.; Wójciak M.; Sowa I. First Electrochemical Sensor (Screen-Printed Carbon Electrode Modified with Carboxyl Functionalized Multiwalled Carbon Nanotubes) for Ultratrace Determination of Diclofenac. Materials 2020, 13, 781.10.3390/ma13030781. PubMed DOI PMC
Lavanya N.; Fazio E.; Neri F.; Bonavita A.; Leonardi S. G.; Neri G.; Sekar C. Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode. J. Electroanal. Chem. 2016, 770, 23–32. 10.1016/j.jelechem.2016.03.017. DOI
Feng S.; Yu L.; Yan M.; Ye J.; Huang J.; Yang X. Holey nitrogen-doped graphene aerogel for simultaneously electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 2021, 224, 12185110.1016/j.talanta.2020.121851. PubMed DOI
Chemspider database, Royal Society of Chemistry, 2022, www.chemspider.com.
Dvořák M.; Seip K. F.; Pedersen-Bjergaard S.; Kubáň P. Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids. Anal. Chim. Acta 2018, 1005, 34–42. 10.1016/j.aca.2017.11.081. PubMed DOI
Kubáň P.; Boček P. The effects of electrolysis on operational solutions in electromembrane extraction: the role of acceptor solution. J. Chromatogr. A 2015, 1398, 11–19. 10.1016/j.chroma.2015.04.024. PubMed DOI
Chuntib P.; Themsirimongkon S.; Saipanya S.; Jakmunee J. Sequential injection differential pulse voltammetric method based on screen printed carbon electrode modified with carbon nanotube/Nafion for sensitive determination of paraquat. Talanta 2017, 170, 1–8. 10.1016/j.talanta.2017.03.073. PubMed DOI
Davies N. M.; Anderson K. E. Clinical pharmacokinetics of diclofenac. Clin. Pharmacokinet. 1997, 33, 184–213. 10.2165/00003088-199733030-00003. PubMed DOI
Ensafi A. A.; Izadi M.; Karimi-Maleh H. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 2013, 19, 137–144. 10.1007/s11581-012-0705-0. DOI
Chethana B. K.; Basavanna S.; Arthoba Naik Y. Voltammetric determination of diclofenac sodium using tyrosine-modified carbon paste electrode. Ind. Eng. Chem. Res. 2012, 51, 10287–10295. 10.1021/ie202921e. DOI
Goodarzian M.; Khalilzade M. A.; Karimi F.; Kumar Gupta V.; Keyvanfard M.; Bagheri H.; Fouladgar M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq. 2014, 197, 114–119. 10.1016/j.molliq.2014.04.037. DOI
Ghani M.; Ghoreishi S. M.; Salehinia S.; Mousavi N.; Ansarinejad H. Electrochemically decorated network-like cobalt oxide nanosheets on nickel oxide nanoworms substrate as a sorbent for the thin film microextraction of diclofenac. Microchem. J. 2019, 146, 149–156. 10.1016/j.microc.2018.12.044. DOI
Seidi S.; Ranjbar M. H.; Baharfar M.; Shanehsaz M.; Tajik M. A promising design of microfluidic electromembrane extraction coupled with sensitive colorimetric detection for colorless compounds based on quantum dots fluorescence. Talanta 2019, 194, 298–307. 10.1016/j.talanta.2018.10.046. PubMed DOI
Baharfar M.; Yamini Y.; Seidi S.; Arain M. B. Approach for downscaling of electromembrane extraction as a lab on-a-chip device followed by sensitive red-green-blue detection. Anal. Chem. 2018, 90, 8478–8486. 10.1021/acs.analchem.8b01224. PubMed DOI
Zarghampour F.; Yamini Y.; Baharfar M.; Javadian G.; Faraji M. On-chip electromembrane extraction followed by sensitive digital image-based colorimetry for determination of trace amounts of Cr (VI). Anal. Methods 2020, 12, 483–490. 10.1039/C9AY02328C. DOI