Analysis of striatal connectivity corresponding to striosomes and matrix in de novo Parkinson's disease and isolated REM behavior disorder
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
PubMed
38918417
PubMed Central
PMC11199557
DOI
10.1038/s41531-024-00736-9
PII: 10.1038/s41531-024-00736-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Striosomes and matrix are two compartments that comprise the striatum, each having its own distinct immunohistochemical properties, function, and connectivity. It is currently not clear whether prodromal or early manifest Parkinson's disease (PD) is associated with any striatal matrix or striosomal abnormality. Recently, a method of striatal parcellation using probabilistic tractography has been described and validated, using the distinct connectivity of these two compartments to identify voxels with striosome- and matrix-like connectivity. The goal of this study was to use this approach in tandem with DAT-SPECT, a method used to quantify the level of nigrostriatal denervation, to analyze the striatum in populations of de novo diagnosed, treatment-naïve patients with PD, isolated REM behavioral disorder (iRBD) patients, and healthy controls. We discovered a shift in striatal connectivity, which showed correlation with nigrostriatal denervation. Patients with PD exhibited a significantly higher matrix-like volume and associated connectivity than healthy controls and higher matrix-associated connectivity than iRBD patients. In contrast, the side with less pronounced nigrostriatal denervation in PD and iRBD patients showed a decrease in striosome-like volume and associated connectivity indices. These findings could point to a compensatory neuroplastic mechanism in the context of nigrostriatal denervation and open a new avenue in the investigation of the pathophysiology of Parkinson's disease.
Czech Technical University Prague Faculty of Biomedical Engineering Kladno Czech Republic
Department of Radiodiagnostics Na Homolce Hospital Prague Czech Republic
Zobrazit více v PubMed
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017;124:901–905. doi: 10.1007/s00702-017-1686-y. PubMed DOI
Postuma RB, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015;30:1591–1601. doi: 10.1002/mds.26424. PubMed DOI
Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N. Engl. J. Med. 1988;318:876–880. doi: 10.1056/NEJM198804073181402. PubMed DOI
Fearnley JM, Lees AJ. Ageing and parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114:2283–2301. doi: 10.1093/brain/114.5.2283. PubMed DOI
Gibb WRG, Lees AJ. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 1991;54:388. doi: 10.1136/jnnp.54.5.388. PubMed DOI PMC
Pellicano C, et al. Prodromal non-motor symptoms of Parkinson’s disease. Neuropsychiatr Dis. Treat. 2007;3(1):145–152. doi: 10.2147/nedt.2007.3.1.145. PubMed DOI PMC
Hu MT. REM sleep behavior disorder (RBD) Neurobiol. Dis. 2020;143:104996. doi: 10.1016/j.nbd.2020.104996. PubMed DOI
Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep. Med. 2013;14:744–748. doi: 10.1016/j.sleep.2012.10.009. PubMed DOI
Iranzo A, et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS ONe. 2014;9:e89741. doi: 10.1371/journal.pone.0089741. PubMed DOI PMC
Redgrave P, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat. Rev. Neurosci. 2010;11:760–772. doi: 10.1038/nrn2915. PubMed DOI PMC
Prager EM, Plotkin JL. Compartmental function and modulation of the striatum. J. Neurosci. Res. 2019;97:1503–1514. doi: 10.1002/jnr.24522. PubMed DOI PMC
Groenewegen HJ. The basal ganglia and motor control. Neural Plast. 2003;10:107–120. doi: 10.1155/NP.2003.107. PubMed DOI PMC
Crittenden JR, Graybiel AM. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat. 2011;5:12277. doi: 10.3389/fnana.2011.00059. PubMed DOI PMC
Johnston JG, Gerfen CR, Haber SN, van der Kooy D. Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. Brain Res. Dev. Brain Res. 1990;57:93–102. doi: 10.1016/0165-3806(90)90189-6. PubMed DOI
Graybiel AM, Ragsdale CW. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc. Natl Acad. Sci. USA. 1978;75:5723–5726. doi: 10.1073/pnas.75.11.5723. PubMed DOI PMC
Canales JJ, Graybiel AM. A measure of striatal function predicts motor stereotypy. Nat. Neurosci. 2000;3:377–383. doi: 10.1038/73949. PubMed DOI
Jiménez-Castellanos J, Graybiel AM. Compartmental origins of striatal efferent projections in the cat. Neuroscience. 1989;32:297–321. doi: 10.1016/0306-4522(89)90080-8. PubMed DOI
Gerfen CR. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science. 1989;246:385–388. doi: 10.1126/science.2799392. PubMed DOI
Fujiyama F, et al. Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci. 2011;33:668–677. doi: 10.1111/j.1460-9568.2010.07564.x. PubMed DOI
Lévesque M, Parent A. The striatofugal fiber system in primates: A reevaluation of its organization based on single-axon tracing studies. Proc. Natl Acad. Sci. USA. 2005;102:11888–11893. doi: 10.1073/pnas.0502710102. PubMed DOI PMC
Guttenberg ND, Klop H, Minami M, Satoh M, Voorn P. Co-localization of mu opioid receptor is greater with dynorphin than enkephalin in rat striatum. Neuroreport. 1996;7:2119–2124. doi: 10.1097/00001756-199609020-00011. PubMed DOI
Prensa L, Parent A. The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J. Neurosci. 2001;21:7247–7260. doi: 10.1523/JNEUROSCI.21-18-07247.2001. PubMed DOI PMC
Matsuda W, et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 2009;29:444–453. doi: 10.1523/JNEUROSCI.4029-08.2009. PubMed DOI PMC
Gerfen CR, Herkenham M, Thibault J. The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J. Neurosci. 1987;7:3915–3934. doi: 10.1523/JNEUROSCI.07-12-03915.1987. PubMed DOI PMC
White NM, Hiroi N. Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc. Natl Acad. Sci. USA. 1998;95:6486–6491. doi: 10.1073/pnas.95.11.6486. PubMed DOI PMC
Friedman A, et al. Striosomes mediate value-based learning vulnerable in age and a huntington’s disease model. Cell. 2020;183:918–934.e49. doi: 10.1016/j.cell.2020.09.060. PubMed DOI PMC
Ito H, Goto S, Sakamoto S, Hirano A. Calbindin-D28k in the basal ganglia of patients with parkinsonism. Ann. Neurol. 1992;32:543–550. doi: 10.1002/ana.410320410. PubMed DOI
Goto S, Hirano A. Inhomogeneity of the putaminal lesion in striatonigral degeneration. Acta Neuropathol. 1990;80:204–207. doi: 10.1007/BF00308925. PubMed DOI
Graybiel AM, Ohta K, Roffler-Tarlov S. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J. Neurosci. 1990;10:720. doi: 10.1523/JNEUROSCI.10-03-00720.1990. PubMed DOI PMC
Moratalla R, et al. Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl Acad. Sci. USA. 1992;89:3859–3863. doi: 10.1073/pnas.89.9.3859. PubMed DOI PMC
Henry B, Duty S, Fox SH, Crossman AR, Brotchie JM. Increased striatal pre-proenkephalin B expression is associated with dyskinesia in Parkinson’s disease. Exp. Neurol. 2003;183:458–468. doi: 10.1016/S0014-4886(03)00064-5. PubMed DOI
Waugh JL, et al. An MRI method for parcellating the human striatum into matrix and striosome compartments in vivo. Neuroimage. 2022;246:118714. doi: 10.1016/j.neuroimage.2021.118714. PubMed DOI PMC
Iravani MM, et al. A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets. Eur. J. Neurosci. 2005;21:841–854. doi: 10.1111/j.1460-9568.2005.03915.x. PubMed DOI
Turner BH, Wilson JS, McKenzie JC, Richtand N. MPTP produces a pattern of nigrostriatal degeneration which coincides with the mosaic organization of the caudate nucleus. Brain Res. 1988;473:60–64. doi: 10.1016/0006-8993(88)90315-0. PubMed DOI
Sanjari Moghaddam H, Dolatshahi M, Mohebi F, Aarabi MH. Structural white matter alterations as compensatory mechanisms in Parkinson’s disease: a systematic review of diffusion tensor imaging studies. J. Neurosci. Res. 2020;98:1398–1416. doi: 10.1002/jnr.24617. PubMed DOI
Mishra VR, et al. Unique white matter structural connectivity in early-stage drug-naive Parkinson disease. Neurology. 2020;94:e774–e784. doi: 10.1212/WNL.0000000000008867. PubMed DOI PMC
Mole JP, et al. Increased fractional anisotropy in the motor tracts of Parkinson’s disease suggests compensatory neuroplasticity or selective neurodegeneration. Eur. Radiol. 2016;26:3327–3335. doi: 10.1007/s00330-015-4178-1. PubMed DOI PMC
Nigro S, et al. Characterizing structural neural networks in de novo Parkinson disease patients using diffusion tensor imaging. Hum. Brain Mapp. 2016;37:4500–4510. doi: 10.1002/hbm.23324. PubMed DOI PMC
Boonstra JT, Michielse S, Temel Y, Hoogland G, Jahanshahi A. Neuroimaging detectable differences between Parkinson’s disease motor subtypes: a systematic review. Mov. Disord. Clin. Pract. 2021;8:175–192. doi: 10.1002/mdc3.13107. PubMed DOI PMC
Barbagallo G, et al. Structural connectivity differences in motor network between tremor-dominant and nontremor Parkinson’s disease. Hum. Brain Mapp. 2017;38:4716–4729. doi: 10.1002/hbm.23697. PubMed DOI PMC
Hou Y, et al. Patterns of striatal and cerebellar functional connectivity in early-stage drug-naïve patients with Parkinson’s disease subtypes. Neuroradiology. 2018;60:1323–1333. doi: 10.1007/s00234-018-2101-6. PubMed DOI
Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239–254. doi: 10.1016/j.neuroimage.2012.06.081. PubMed DOI
Shipp S, Uk SA. The functional logic of corticostriatal connections. Brain Struct. Funct. 2016;222:669–706. doi: 10.1007/s00429-016-1250-9. PubMed DOI PMC
Brotchie, J. & Fitzer-Attas, C. Mechanisms compensating for dopamine loss in early Parkinson disease. Neurology72, S32–S38 (2009). PubMed
Haber SN. Corticostriatal circuitry. Dialogues Clin. Neurosci. 2016;18:7–21. doi: 10.31887/DCNS.2016.18.1/shaber. PubMed DOI PMC
Alushaj E, et al. Subregional analysis of striatum iron in Parkinson’s disease and rapid eye movement sleep behaviour disorder. NeuroImage Clin. 2023;40:103519. doi: 10.1016/j.nicl.2023.103519. PubMed DOI PMC
Funk AT, et al. In humans, striato-pallido-thalamic projections are largely segregated by their origin in either the striosome-like or matrix-like compartments. Front. Neurosci. 2023;17:1178473. doi: 10.3389/fnins.2023.1178473. PubMed DOI PMC
Dušek P, et al. Clinical characteristics of newly dia gnosed Parkinson’s disease patients included in the longitudinal BIO-PD study. Ces. Slov. Neurol. Neurochir. 2020;83:633–639. doi: 10.48095/cccsnn2020633. DOI
Sateia MJ. International classification of sleep disorders-third edition. Chest. 2014;146:1387–1394. doi: 10.1378/chest.14-0970. PubMed DOI
Dušek, P. et al. Relations of non-motor symptoms and dopamine transporter binding in REM sleep behavior disorder. Sci. Rep. 9, 15463 (2019). PubMed PMC
Brimblecombe KR, Cragg SJ. The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem. Neurosci. 2017;8:235–242. doi: 10.1021/acschemneuro.6b00333. PubMed DOI
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI
Woolrich, M. W. et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage45, S173–S186 (2009). PubMed
Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage23, S208–S219 (2004). PubMed
Mölder F, et al. Sustainable data analysis with Snakemake. F1000Research. 2021;10:33. doi: 10.12688/f1000research.29032.2. PubMed DOI PMC
Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–194. doi: 10.1006/nimg.1998.0395. PubMed DOI
Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl Acad. Sci. USA. 2000;97:11050–11055. doi: 10.1073/pnas.200033797. PubMed DOI PMC
Fischl B, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–355. doi: 10.1016/S0896-6273(02)00569-X. PubMed DOI
Gaser, C. et al. CAT – a computational anatomy toolbox for the analysis of structural MRI data. bioRxiv.10.1101/2022.06.11.495736 (2023).
Klasson, N., Olsson, E., Eckerström, C., Malmgren, H. & Wallin, A. Estimated intracranial volume from FreeSurfer is biased by total brain volume. Eur. Radiol. Exp. 2, 24 (2018).
Voevodskaya O. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front. Aging Neurosci. 2014;6:93610. doi: 10.3389/fnagi.2014.00264. PubMed DOI PMC
Li X, Xing Y, Martin-Bastida A, Piccini P, Auer DP. Patterns of grey matter loss associated with motor subscores in early Parkinson’s disease. NeuroImage Clin. 2018;17:498–504. doi: 10.1016/j.nicl.2017.11.009. PubMed DOI PMC