• This record comes from PubMed

Kinetics and pathways of sub-lithic microbial community (hypolithon) development

. 2024 Jun ; 16 (3) : e13290.

Language English Country United States Media print

Document type Journal Article

Grant support
University of Pretoria
113308 National Research Foundation
137954 National Research Foundation
95565 National Research Foundation

Type I hypolithons are microbial communities dominated by Cyanobacteria. They adhere to the underside of semi-translucent rocks in desert pavements, providing them with a refuge from the harsh abiotic stresses found on the desert soil surface. Despite their crucial role in soil nutrient cycling, our understanding of their growth rates and community development pathways remains limited. This study aimed to quantify the dynamics of hypolithon formation in the pavements of the Namib Desert. We established replicate arrays of sterile rock tiles with varying light transmission in two areas of the Namib Desert, each with different annual precipitation regimes. These were sampled annually over 7 years, and the samples were analysed using eDNA extraction and 16S rRNA gene amplicon sequencing. Our findings revealed that in the zone with higher precipitation, hypolithon formation became evident in semi-translucent rocks 3 years after the arrays were set up. This coincided with a Cyanobacterial 'bloom' in the adherent microbial community in the third year. In contrast, no visible hypolithon formation was observed at the array set up in the hyper-arid zone. This study provides the first quantitative evidence of the kinetics of hypolithon development in hot desert environments, suggesting that development rates are strongly influenced by precipitation regimes.

See more in PubMed

Auguie, B. (2017) gridExtra: miscellaneous functions for “grid” Graphics.

Azúa‐Bustos, A. , González‐Silva, C. , Mancilla, R.A. , Salas, L. , Gómez‐Silva, B. , McKay, C.P. et al. (2011) Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microbial Ecology, 61, 568–581. Available from: 10.1007/s00248-010-9784-5 PubMed DOI

Bay, S.K. , Dong, X. , Bradley, J.A. , Leung, P.M. , Grinter, R. , Jirapanjawat, T. et al. (2021) Trace gas oxidizers are widespread and active members of soil microbial communities. Nature Microbiology, 6, 246–256. Available from: 10.1038/s41564-020-00811-w PubMed DOI

Beam, J.P. , Becraft, E.D. , Brown, J.M. , Schulz, F. , Jarett, J.K. , Bezuidt, O. et al. (2020) Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 17(11), 1848. Available from: 10.3389/fmicb.2020.01848 PubMed DOI PMC

Belnap, J. (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes, 20, 3159–3178. Available from: 10.1002/hyp.6325 DOI

Bolyen, E. , Rideout, J.R. , Dillon, M.R. , Bokulich, N.A. , Abnet, C.C. , Al‐Ghalith, G.A. et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852–857. Available from: 10.1038/s41587-019-0209-9 PubMed DOI PMC

Bonani, G. , Friedmann, E.I. , Ocampo‐Friedmann, R. , McKay, C.P. & Woelfli, W. (1988) Preliminary report on radiocarbon dating of cryptoendolithic microorganisms. Polarforschung, 58, 199–200. PubMed

Bosch, J. , Marais, E. , Maggs‐Kölling, G. , Ramond, J.B , Lebre, P.H. , Eckardt, F. et al. (2022) Water inputs across the Namib Desert: implications for dryland edaphic microbiology. Frontiers of Biogeography, 14(2). Available from: 10.21425/F5FBG55302 DOI

Bosch, J. , Varliero, G. , Hallsworth, J.E. , Dallas, T.D. , Hopkins, D. , Frey, B. et al. (2021) Microbial anhydrobiosis. Environmental Microbiology, 23, 6377–6390. Available from: 10.1111/1462-2920.15699 PubMed DOI

Callahan, B.J. , McMurdie, P.J. , Rosen, M.J. , Han, A.W. , Johnson, A.J.A. & Holmes, S.P. (2016) DADA2: high‐resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581–583. Available from: 10.1038/nmeth.3869 PubMed DOI PMC

Cano‐Díaz, C. , Mateo, P. , Muñoz‐Martín, M.Á. & Maestre, F.T. (2018) Diversity of biocrust‐forming cyanobacteria in a semiarid gypsiferous site from Central Spain. Journal of Arid Environments, 151, 83–89. Available from: 10.1016/j.jaridenv.2017.11.008 PubMed DOI PMC

Cao, Q. , Sun, X. , Rajesh, K. , Chalasani, N. , Gelow, K. , Katz, B. et al. (2021) Effects of rare microbiome taxa filtering on statistical analysis. Frontiers in Microbiology, 11, 607325. Available from: 10.3389/fmicb.2020.607325 PubMed DOI PMC

Caruso, T. , Chan, Y. , Lacap, D.C. , Lau, M.C.Y. , McKay, C.P. & Pointing, S.B. (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. The ISME Journal, 5, 1406–1413. Available from: 10.1038/ismej.2011.21 PubMed DOI PMC

Chan, Y. , Lacap, D.C. , Lau, M.C.Y. , Ha, K.Y. , Warren‐Rhodes, K.A. , Cockell, C.S. et al. (2012) Hypolithic microbial communities: between a rock and a hard place. Environmental Microbiology, 14, 2272–2282. Available from: 10.1111/j.1462-2920.2012.02821.x PubMed DOI

Charrad, M. , Ghazzali, N. , Boiteau, V. & Niknafs, A. (2014) NbClust: an R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61, 1–36.

Chen, B. , He, X. , Pan, B. , Zou, X. & You, N. (2021) Comparison of beta diversity measures in clustering the high‐dimensional microbial data. PLoS One, 16, e0246893. Available from: 10.1371/journal.pone.0246893 PubMed DOI PMC

Chen, H. (2018) VennDiagram: Generate high‐resolution Venn and Euler plots.

Cockell, C.S. & Stokes, M.D. (2004) Widespread colonization by polar hypoliths. Nature, 431, 414. Available from: 10.1038/431414a PubMed DOI

Cockell, C.S. & Stokes, M.D. (2006) Hypolithic colonization of opaque rocks in the Arctic and Antarctic Polar Desert. Arctic, Antarctic, and Alpine Research, 38, 335–342.

Cowan, D.A. , Hopkins, D.W. , Jones, B.E. , Maggs‐Kölling, G. , Majewska, R. & Ramond, J.B. (2020) Microbiomics of Namib Desert habitats. Extremophiles, 24, 17–29. Available from: 10.1007/s00792-019-01122-7 PubMed DOI

Cowan, D.A. , Khan, N. , Pointing, S.B. & Cary, S.C. (2010) Diverse hypolithic refuge communities in the McMurdo dry valleys. Antartic Science, 22, 714–720. Available from: 10.1017/S0954102010000507 DOI

Cowan, D.A. , Pointing, S.B. , Stevens, M.I. , Cary, S.C. , Stomeo, F. & Tuffin, I.M. (2011) Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biology, 34, 307–311. Available from: 10.1007/s00300-010-0872-2 DOI

Davis, N.M. , Proctor, D.M. , Holmes, S.P. , Relman, D.A. & Callahan, B.J. (2018) Simple statistical identification and removal of contaminant sequences in marker‐gene and metagenomics data. Microbiome, 6, 226. Available from: 10.1186/s40168-018-0605-2 PubMed DOI PMC

De Los Ríos, A. , Cary, C. & Cowan, D. (2014) The spatial structures of hypolithic communities in the dry valleys of East Antarctica. Polar Biology, 37, 1823–1833. Available from: 10.1007/s00300-014-1564-0 DOI

de Vries, A. & Ripley, B.D. (2020) ggdendro: Create dendrograms and tree diagrams using “ggplot2”.

Di Martino, P. (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiology, 4(2), 274–288. Available from: 10.3934/microbiol.2018.2.274 PubMed DOI PMC

Dose, K. , Bieger‐Dose, A. , Ernst, B. , Feister, U. , Gómez‐Silva, B. , Klein, A. et al. (2001) Survival of microorganisms under the extreme conditions of the Atacama Desert. Origins of Life and Evolution of the Biosphere, 31, 287–303. Available from: 10.1023/A:1010788829265 PubMed DOI

Dunnington, D. (2021) Ggspatial: spatial data framework for ggplot2.

Eckardt, F.D., Maggs‐Kölling, G., Marais, E., & de Jager, P.C. (2022) A brief introduction to hot desert environments: climate, geomorphology, habitats, and soils. Microbiology of Hot Deserts, 1–36. 10.1007/978-3-030-98415-1_1 DOI

Eckardt, F.D. , Soderberg, K. , Coop, L.J. , Muller, A.A. , Vickery, K.J. , Grandin, R.D. et al. (2013) The nature of moisture at Gobabeb, in the central Namib Desert. Journal of Arid Environments, 93, 7–19. Available from: 10.1016/j.jaridenv.2012.01.011 DOI

Ekwealor, J.T.B. & Fisher, K.M. (2020) Life under quartz: Hypolithic mosses in the Mojave Desert. PLoS One, 15, e0235928. Available from: 10.1371/journal.pone.0235928 PubMed DOI PMC

Flemming, H.C. , Neu, T.R. & Wozniak, D.J. (2007) The EPS matrix: the “house of biofilm cells”. Journal of Bacteriology, 189(22), 7945–7947. Available from: 10.1128/JB.00858-07 PubMed DOI PMC

Garcia‐Pichel, F. , Prufert‐Bebout, L. & Muyzer, G. (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Applied and Environmental Microbiology, 62(9), 3284–3291. Available from: 10.1128/aem.62.9.3284-3291.1996 PubMed DOI PMC

Gwizdala, M. , Lebre, P.H. , Maggs‐Kölling, G. , Marais, E. , Cowan, D.A. & Krüger, T.P.J. (2021) Sub‐lithic photosynthesis in hot desert habitats. Environmental Microbiology, 23, 3867–3880. Available from: 10.1111/1462-2920.15505 PubMed DOI

Hamilton, W. & Seely, M. (1976) Fog basking by the Namib Desert beetle, Onymacris unguicularis . Nature, 262, 284–285. Available from: 10.1038/262284a0 DOI

Hinchliffe, G. , Bollard‐Breen, B. , Cowan, D.A. , Doshi, A. , Gillman, L.N. , Maggs‐Kolling, G. et al. (2017) Advanced photogrammetry to assess lichen colonization in the hyper‐arid Namib Desert. Frontiers in Microbiology, 27(8), 2083. Available from: 10.3389/fmicb.2017.02083 PubMed DOI PMC

Huber, N. (2021) ggdendroplot: Create dendrograms for ggplot2.

Jones, A.C. , Monroe, E.A. , Podell, S. , Hess, W.R. , Klages, S. , Esquenazi, E. et al. (2011) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula . Proc Natl Acad Sci USA, 108(21), 8815–8820. Available from: 10.1073/pnas.1101137108 PubMed DOI PMC

Jordaan, K. , Lappan, R. , Dong, X. , Aitkenhead, I.J. , Bay, S.K. , Chiri, E. et al. (2020) Hydrogen‐oxidizing bacteria are abundant in desert soils and strongly stimulated by hydration. mSystems, 5(6), e01131–e01220. Available from: 10.1128/msystems.01131-20 PubMed DOI PMC

Kembel, S.W. , Cowan, P.D. , Helmus, M.R. , Cornwell, W.K. , Morlon, H. , Ackerly, D.D. et al. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464. Available from: 10.1093/bioinformatics/btq166 PubMed DOI

Klindworth, A. , Pruesse, E. , Schweer, T. , Peplies, J. , Quast, C. , Horn, M. et al. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next‐generation sequencing‐based diversity studies. Nucleic Acids Research, 41, e1. Available from: 10.1093/nar/gks808 PubMed DOI PMC

Kolde, R. (2019) Pheatmap: pretty heatmaps.

Kumar, M. , Singh, P. , Tripathi, J. , Srivastava, A. , Tripathi, M.K. , Ravi, A.K. et al. (2014) Identification and structure elucidation of antimicrobial compounds from Lyngbya aestuarii and Aphanothece bullosa. Cellular and Molecular Biology, 60(5), 82–89. PubMed

Kvíderová, J. , Kumar, D. , Lukavský, J. , Kaštánek, P. & Adhikary, S.P. (2018) Estimation of growth and exopolysaccharide production by two soil cyanobacteria, Scytonema tolypothrichoides and Tolypothrix bouteillei as determined by cultivation in irradiance and temperature crossed gradients. Engineering in Life Sciences, 19(3), 184–195. Available from: 10.1002/elsc.201800082 PubMed DOI PMC

Lacap, D.C. , Warren‐Rhodes, K.A. , McKay, C.P. & Pointing, S.B. (2011) Cyanobacteria and chloroflexi‐dominated hypolithic colonization of quartz at the hyper‐arid core of the Atacama Desert, Chile. Extremophiles, 15, 31–38. Available from: 10.1007/s00792-010-0334-3 PubMed DOI PMC

Lacap‐Bugler, D.C. , Lee, K.K. , Archer, S. , Gillman, L.N. , Lau, M.C.Y. , Leuzinger, S. et al. (2017) Global diversity of desert hypolithic cyanobacteria. Frontiers in Microbiology, 8, 867. Available from: 10.3389/fmicb.2017.00867 PubMed DOI PMC

Lancaster, J. , Lancaster, N. & Seely, M.K. (1984) Climate of the central Namib Desert. Madoqua, 14(1), 5–61.

Lebre, P. , De Maayer, P. & Cowan, D. (2017) Xerotolerant bacteria: surviving through a dry spell. Nature Reviews. Microbiology, 15, 285–296. Available from: 10.1038/nrmicro.2017.16 PubMed DOI

Lebre, P.H. , Bottos, E. , Makhalanyane, T.P. , Hogg, I. & Cowan, D.A. (2020) Islands in the sand: are all hypolithic microbial communities the same? FEMS Microbiology Ecology, 97, fiaa216. Available from: 10.1093/femsec/fiaa216 PubMed DOI

Lebre, P.H., Cowan, D.A. & Makhalanyane, T.P. (2021) 1.2 The hypolithic habitat: microbial communities under translucent rocks. In: Büdel, B. & Friedl, T. (Eds.) Life at Rock Surfaces: Challenged by Extreme Light, Temperature and Hydration Fluctuations (pp. 39–54). Berlin, Boston: De Gruyter. 10.1515/9783110646467-002 DOI

Lee, K.C.Y. , Dunfield, P.F. & Stott, M.B. (2014) The phylum Armatimonadetes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E. & Thompson, F. (Eds.) The prokaryotes. Berlin, Heidelberg: Springer. Available from: 10.1007/978-3-642-38954-2_388 DOI

León‐Sobrino, C. , Ramond, J.B. , Maggs‐Kölling, G. & Cowan, D.A. (2019) Nutrient acquisition, rather than stress response over diel cycles, drives microbial transcription in a hyper‐arid Namib Desert soil. Frontiers in Microbiology, 10, 1054. Available from: 10.3389/fmicb.2019.01054 PubMed DOI PMC

Lin, H. & Peddada, S.D. (2020a) Analysis of compositions of microbiomes with bias correction. Nature Communications, 11, 3514. Available from: 10.1038/s41467-020-17041-7 PubMed DOI PMC

Lin, H. & Peddada, S.D. (2020b) Analysis of microbial compositions: a review of normalization and differential abundance analysis. NPJ Biofilms and Microbiomes, 6, 60. Available from: 10.1038/s41522-020-00160-w PubMed DOI PMC

Maechler, M. , Rousseeuw, P. , Struyf, A. , Hubert, M. & Hornik, K. (2021) Cluster: cluster analysis basics and extensions.

Makhalanyane, T.P. , Valverde, A. , Birkeland, N.‐K. , Cary, S.C. , Tuffin, M.I. & Cowan, D.A. (2013) Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal, 7, 2080–2090. Available from: 10.1038/ismej.2013.94 PubMed DOI PMC

Makhalanyane, T.P. , Valverde, A. , Gunnigle, E. , Frossard, A. , Ramond, J.B. & Cowan, D.A. (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews, 39, 203–221. Available from: 10.1093/femsre/fuu011 PubMed DOI

McKnight, D.T. , Huerlimann, R. , Bower, D.S. , Schwarzkopf, L. , Alford, R.A. & Zenger, K.R. (2019) Methods for normalizing microbiome data: an ecological perspective. Methods in Ecology and Evolution, 10, 389–400. Available from: 10.1111/2041-210X.13115 DOI

McMurdie, P.J. & Holmes, S. (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8, e61217. Available from: 10.1371/journal.pone.0061217 PubMed DOI PMC

Mirzabaev, A.J. , Wu, J.E. , García‐Oliva, F. , Hussein, I.A.G. , Iqbal, M.H. , Kimutai, J. et al. (2019) Desertification. In: Shukla, P.R., Skea, J., Buendia, E.C., Masson‐Delmotte, V., Pörtner, H.‐O., Roberts, D.C. et al. (Eds.) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, In press.

Nearing, J.T. , Douglas, G.M. , Hayes, M. , MacDonald, J. , Desai, D. , Allward, N. et al. (2021) Microbiome differential abundance methods produce different results across 38 datasets. Nature Communications, 13, 342. Available from: 10.1038/s41467-022-28034- PubMed DOI PMC

Neuwirth, E. (2014) RColorBrewer: ColorBrewer palettes.

Oksanen, J. , Blanchet, F.G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. et al. (2019) Vegan: community ecology package.

Olivier, J. (1995) Spatial distribution of fog in the Namib. Journal of Arid Environments, 29, 129–138. Available from: 10.1016/S0140-1963(05)80084-9 DOI

Onodera, H. , Satake, M. , Oshima, Y. , Yasumoto, T. & Carmichael, W.W. (1997) New saxitoxin analogues from the freshwater filamentous cyanobacterium Lyngbya wollei . Natural Toxins, 5, 146–151. Available from: 10.1002/19970504NT4 PubMed DOI

Ortiz, M. , Leung, P.M. , Shelley, G. , Jirapanjawat, T. , Nauer, P.A. , Van Goethem, M.W. et al. (2021) Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci USA, 118(45), e2025322118. Available from: 10.1073/pnas.2025322118 PubMed DOI PMC

Pebesma, E. (2018) Simple features for R: standardized support for spatial vector data. The R Journal, 10, 439. Available from: 10.32614/RJ-2018-009 DOI

Pointing, S.B. & Belnap, J. (2012) Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10, 551–562. Available from: 10.1038/nrmicro2831 PubMed DOI

Prufert‐Bebout, L. & Garcia‐Pichel, F. (1994) Field and cultivated Microcoleus chthonoplastes: the search for clues to its prevalence in marine microbial mats. In: Stal, L.J. & Caumette, P. (Eds.) Microbial Mats. NATO ASI series, Vol. 35. Berlin, Heidelberg: Springer. Available from: 10.1007/978-3-642-78991-5_12 DOI

Quast, C. , Pruesse, E. , Yilmaz, P. , Gerken, J. , Schweer, T. , Yarza, P. et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web‐based tools. Nucleic Acids Research, 41, D590–D596. Available from: 10.1093/nar/gks1219 PubMed DOI PMC

R Core Team . (2021) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Ramond, J.‐B. , Woodborne, S. , Hall, G. , Seely, M. & Cowan, D.A. (2018) Namib Desert primary productivity is driven by cryptic microbial community N‐fixation. Scientific Reports, 8(1), 6921. Available from: 10.1038/s41598-018-25078-4 PubMed DOI PMC

Scola, V., Ramond, J.‐B., Frossard, A., Zablocki, O., Adriaenssens, E.M., Johnson, R.M., et al. (2017) Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Microbial Ecology, 75(1), 193–203. 10.1007/s00248-017-1009-8 PubMed DOI

Siegesmund, M.A. , Johansen, J.R. , Karsten, U. & Friedl, T. (2008) Coleofasciculus gen. Nov. (cyanobacteria): morphological and molecular criteria for revision of the genus microcoleus gomont. Journal of Phycology, 44, 1572–1585. Available from: 10.1111/j.1529-8817.2008.00604.x PubMed DOI

Slowikowski, K. (2021) ggrepel: Automatically Position Non‐Overlapping Text Labels with “ggplot2”.

South, A. (2017) Rnaturalearth: world map data from natural earth.

Steenwyk, J.L. (2021) ggpubfigs: ggpubfigs.

Tamulonis, C. , Postma, M. & Kaandorp, J. (2011) Modeling filamentous cyanobacteria reveals the advantages of long and fast trichomes for optimizing light exposure. PLoS One, 6(7), e22084. Available from: 10.1371/journal.pone.0022084 PubMed DOI PMC

Van Goethem, M.W. , Makhalanyane, T.P. , Cowan, D.A. & Valverde, A. (2017) Cyanobacteria and Alphaproteobacteria may facilitate cooperative interactions in niche communities. Frontiers in Microbiology, 8, 2099. Available from: 10.3389/fmicb.2017.02099 PubMed DOI PMC

Ward, D. (2010) The biology of deserts, (1st ed.) Biology of Habitats (Oxford, 2008); online edition, Oxford Academic (Accessed 5 December 2023). http://doi.org.10.1093/acprof:oso/9780199211470.001.0001.

Warren‐Rhodes, K.A. , McKay, C.P. , Boyle, L.N. , Wing, M.R. , Kiekebusch, E.M. , Cowan, D.A. et al. (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. Journal of Geophysical Research – Biogeosciences, 118, 1451–1460. Available from: 10.1002/jgrg.20117 DOI

Warren‐Rhodes, K.A. , Rhodes, K.L. , Pointing, S.B. , Ewing, S.A. , Lacap, D.C. , Gómez‐Silva, B. et al. (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the Hyperarid Atacama Desert. Microbial Ecology, 52, 389–398. Available from: 10.1007/s00248-006-9055-7 PubMed DOI

Weiss, S. , Xu, Z.Z. , Peddada, S. , Amir, A. , Bittinger, K. , Gonzalez, A. et al. (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5, 27. Available from: 10.1186/s40168-017-0237-y PubMed DOI PMC

Wickham, H. (2016) ggplot2: elegant graphics for data analysis. New York, NY: Springer‐Verlag.

Wickham, H. (2019) Stringr: simple, consistent wrappers for common string operations.

Wickham, H. , François, R. , Henry, L. & Müller, K. (2021) Dplyr: a grammar of data manipulation.

Yilmaz, P. , Parfrey, L.W. , Yarza, P. , Gerken, J. , Pruesse, E. , Quast, C. et al. (2014) The SILVA and “all‐species living tree project (LTP)” taxonomic frameworks. Nucl Acids Res, 42, D643–D648. Available from: 10.1093/nar/gkt1209 PubMed DOI PMC

Zainuddin, E.N. , Jansen, R. , Nimtz, M. , Wray, V. , Preisitsch, M. , Lalk, M. et al. (2009) Lyngbyazothrins A‐D, antimicrobial cyclic undecapeptides from the cultured cyanobacterium Lyngbya sp. Journal of Natural Products, 72(8), 1373–1378. Available from: 10.1021/np8007792 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...