Estimation of growth and exopolysaccharide production by two soil cyanobacteria, Scytonema tolypothrichoides and Tolypothrix bouteillei as determined by cultivation in irradiance and temperature crossed gradients

. 2019 Mar ; 19 (3) : 184-195. [epub] 20181228

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32625001

Two filamentous cyanobacteria of the genera Scytonema and Tolypothrix were reported to be effective for stabilizing soil in arid areas due to the production of significant amounts of extracellular polysaccharides (EPS). These EPS may also have applications in the biotechnology industry. Therefore, two cyanobacterial species, Scytonema tolypothrichoides and Tolypothrix bouteillei were examined using crossed gradients of temperature (8-40°C) and irradiance (3-21 W m-2) to identify their temperature and irradiance optima for maximum biomass and EPS production. According to their reported temperature requirements, both strains were considered mesophilic. The optimum growth range of temperature in S. tolypothrichoides (27 to 34°C) was higher than T. bouteillei (22-32°C). The optimum irradiance range for growth of S. tolypothrichoides (9-13 W m-2) was slightly lower than T. bouteillei (7-18 W m-2). Maximum EPS production by S. tolypothrichoides occurred at similar temperatures (28-34°C) as T. bouteillei (27-34°C), both slightly higher than for maximum growth. The optimum irradiance range for EPS production was comparable to that for growth in S. tolypotrichoides (8-13 W m-2), and slightly lower in T. bouteillei (7-17 W m-2). The Redundancy Analysis confirmed that temperature was the most important controlling factor and protocols for field applications or for mass cultivation can now be developed.

Zobrazit více v PubMed

De Philippis, R. , Vincenzini, M. , Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 1998, 22, 151–175.

Potts, M. , Desiccation tolerance of prokaryotes. Microbiol. Mol. Biol. Rev. 1994, 58, 755–805. PubMed PMC

Potts, M. , Mechanisms of desiccation tolerance in cyanobacteria. Eur. J. Phycol. 1999, 34, 319–328.

Kvíderová, J. , Elster, J. , Šimek, M. , In situ response of Nostoc commune s.l. colonies to desiccation in Central Svalbard, Norwegian High Arctic. Fottea 2011, 11, 87–97.

Häder, D.‐P. , Adaptation to UV stress in algae In: Rai L. C., Gaur J. P., editor. Algal Adaptation to Environmental Stresses. Physiological, Biochemical and Molecular Mechanisms. Berlin, Heidelberg, NY: Springer‐Verlag; 2001. p. 173–202.

Otero, A. , Vincenzini, M. , Nostoc (Cyanophyceae) goes nude: extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J. Phycol. 2004, 40, 74–81.

Campbell, S. E. , Seeler, J. S. , Golubic, S. , Desert crust formation and soil stabilization. Arid Land Res. Manag. 1989, 3, 217–228.

Mager, D. , Thomas, A. , Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J. Arid Environ. 2011, 75, 91–97.

Belnap, J. , Büdel, B. , Lange, O. L. , Biological soil crusts: characteristics and distribution In: Belnap J., Lange O., editors. Biological Soil Crusts: Structure, Function, and Management. Berlin, Heidelberg, NY: Springer; 2003. p. 3–30.

Thomas, A. D. , Dougill, A. J. , Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa. J. Arid Environ. 2006, 64, 270–283.

Li, P. , Harding, S. E. , Liu, Z. , Cyanobacterial exopolysaccharides: their nature and potential biotechnological applications. Biotechnol. Genet. Eng. Rev. 2001, 18, 375–404. PubMed

Delattre, C. , Pierre, G. , Laroche, C. , Michaud, P. , Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. PubMed

Higgins, M. J. , Novak, J. T. , Characterization of exocellular protein and its role in bioflocculation. J. Environ. Eng. 1997, 123, 479–485.

De Philippis, R. , Colica, G. , Micheletti, E. , Exopolysaccharide‐producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl. Microbiol. Biot. 2011, 92, 697–708. PubMed

Tiwari, O. N. , et al., Characterization and optimization of bioflocculant exopolysaccharide production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in culture conditions. Appl. Biochem. Biotechnol. 2015, 176, 1950–1963. PubMed

De Philippis, R. , Sili, C. , Paperi, R. , Vincenzini, M. , Exopolysaccharide‐producing cyanobacteria and their possible exploitation: a review. J. Appl. Phycol. 2001, 13, 293–299.

Kanekiyo, K. , et al., Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J. Nat. Prod. 2005, 68, 1037–1041. PubMed

Talyshinsky, M. M. , Souprun, Y. Y. , Huleihel, M. M. , Anti‐viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int. 2002, 2, 8. PubMed PMC

Kvíderová, J. , Biofilm In: Amils R., et al., editors. Encyclopedia of Astrobiology. Berlin, Heidelberg, NY: Springer; 2015. p. 1–3.

Roeselers, G. , Loosdrecht, M. C. M. v. , Muyzer, G. , Phototrophic biofilms and their potential applications. J. Appl. Phycol. 2008, 20, 227–235. PubMed PMC

Pippo Di, et al., Characterization of exopolysaccharides produced by seven biofilm‐forming cyanobacterial strains for biotechnological applications. J. Appl. Phycol. 2013, 25, 1697–1708.

Moreno, J. , et al., Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J. Biotechnol. 1998, 60, 175–182.

Phlips, E. J. , Zeman, C. , Hansen, P. , Growth, photosynthesis, nitrogen fixation and carbohydrate production by a unicellular cyanobacterium, Synechococcus sp. (Cyanophyta). J. Appl. Phycol. 1989, 1, 137–145.

Trabelsi, L. , Ouada, H. B. , Bacha, H. , Ghoul, M. , Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis . J. Appl. Phycol. 2009, 21, 405–412.

Davison, I. R. , Environmental effects on algal photosynthesis: temperature. J. Phycol. 1991, 27, 2–8.

Jodłowska, S. , Latała, A. , Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat‐forming cyanobacterium Geitlerinema amphibium . Photosynthetica. 2013, 51, 202–214.

Han, P. P. , et al., Applying the strategy of light environment control to improve the biomass and polysaccharide production of Nostoc flagelliforme . J. Appl. Phycol. 2017, 29, 55–65.

Latała, A. , Misiewicz, S. , Effects of light, temperature and salinity on the growth and chlorophyll—a content of Baltic cyanobacterium Phormidium sp. Arch. Hydrobiol. Suppl. Algol. Stud. 2000, 136/100, 157–180.

Robarts, R. D. , Zohary, T. , Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. N. Z. J. Mar. Freshwater Res. 1987, 21, 391–399.

Zapomělová, E. , et al., Experimental comparison of phenotypical plasticity and growth demands of two strains from the Anabaena circinalis/A. crassa complex (cyanobacteria). J. Plankton Res. 2008, 30, 1257–1269.

Kumar, D. , Kvíderová, J. , Kaštánek, P. , Lukavský, J. , The green alga Dictyosphaerium chlorelloides biomass and polysaccharides production determined using cultivation in crossed gradients of temperature and light. Eng. Life Sci. 2017, 17, 1030–1038. PubMed PMC

Komárek, J. . Süßwasserflora von Mitteleuropa 19/3. Cyanoprokaryota. 3.Teil: Heterocytous genera. Springer, Berlin, Heildelberg, NY: 2013.

Kvíderová, J. , Lukavský, J. , A new unit for crossed gradients of temperature and light In: Elster J., Seckbach J., Vincent W. F., Lhotský O., editors. Algae and Extreme Environments. Stuttgart, Germany: Cramer; 2001. p. 541–550.

Herbert, D. , Phipps, P. , Strange, R. , Chemical analysis of microbial cells In: Norris J. R., Ribbons D. W., editors. Methods in Microbiology. New York, NY: Academic Press; 1971. p. 209–344.

Dell, I. , Dell Statistica (data analysis software system), version 13. software.dell.com, 2015.

Braak, C. J. F. Ter, Šmilauer, P. , Canoco Reference Manual and User's Guide: Software for Ordination, Version 5.0., Microcomputer Power, Ithaca, NY: 2012.

Berenguer, J. , Thermophile In: Gargaud M., et al., editors. Encyclopedia of Astrobiology. Berlin, Heildelberg, NY: Springer; 2011. p. 1666–1667.

Elster, J. , Algal versatility in various extreme environments In: Seckbach J., editor. Enigmatic Microorganisms and Life in Extreme Environments. Dordrecht, the Netherlands: Kluwer Academic Publishers; 1999. p. 215–227.

Roger, P. A. , Reynaud, P. A. , Free living blue green algae in tropical soils In: Dommergues Y., Diem H., editors. Microbiology of Tropical Soils and Plant Productivity. La Hague, France: Martinus Nijhoff Publisher; 1982. p. 147–168.

Belnap, J. , Factors influencing nitrogen fixation and nitrogen release in biological soil crusts In: Belnap J., Lange O., editors. Biological Soil Crusts: Structure, Function, And Management. Berlin, Heidelberg, NY: Springer; 2001. p. 241–261.

Péli, E. R. , et al., Ecophysiological responses of desiccation‐tolerant cryptobiotic crusts. Cent. Eur. J. Biol. 2011, 6, 838–849.

Thimijan, R. W. , Heins, R. D. , Photometric, radiometric and quantum light units of measure: a review of procedures for interconversion. Hort. Science 1983, 18, 818–822.

Hindák, F. , Kvíderová, J. , Lukavský, J. , Growth characteristics of selected thermophilic strains of cyanobacteria using crossed gradients of temperature and light. Biologia. 2013, 68, 830–837.

Malapascua, J. R. , et al., Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat. Biol. 2014, 22, 123–140.

Torzillo, G. , et al., Interplay between photochemical activities and pigment composition in an outdoor culture of Heterococcus pluvialis during shift from the green to red stage. J. Appl. Phycol. 2003, 15, 127–136.

Billi, D. , Potts, M. , Life and death of dried prokaryotes. Res. Microbiol. 2002, 153, 7–12. PubMed

Tamaru, Y. , Takani, Y. , Yoshida, T. , Sakamoto, T. , Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune . Appl. Environ. Microb. 2005, 71, 7327–7333. PubMed PMC

Lin, Y. , et al., Tolerance to freezing stress in cyanobacteria, Nostoc commune and some cyanobacteria with various tolerances to drying stress. Polar Biosci. 2004, 17, 56–68.

Apte, S. K. , Copying with salinity/water stress: cyanobacteria show the way. Proc. Indian Nat. Sci. Acad. 2001, B67, 285–310.

Hershkovitz, N. , Oren, A. , Cohen, Y. , Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl. Environ. Microb. 1991, 57, 645–648. PubMed PMC

Vriezen, J. A. , De Bruijn, F. J. , Nüsslein, K. , Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl. Environ. Microb. 2007, 73, 3451–3459. PubMed PMC

Roberson, E. B. , Firestone, M. K. , Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microb. 1992, 58, 1284–1291. PubMed PMC

Scott, P. , Resurrection plants and the secrets of eternal leaf. Ann. Bot.—London 2000, 85, 159–166.

Konstantinova, T. , Parvanova, D. , Atanassov, A. , Djilianov, D. , Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci. 2002, 163, 157–164.

Helm, R. F. , et al., Structural characterization of the released polysaccharide of desiccation‐tolerant Nostoc commune DRH‐1. J. Bacteriol. 2000, 182, 974–982. PubMed PMC

Nicolaus, B. , et al., Chemical composition and production of exopolysaccharides from representative members of heterocystous and non‐heterocystous cyanobacteria. Phytochemistry 1999, 52, 639–647.

Otero, A. , Vincenzini, M. , Extracellular polysaccharide synthesis by Nostoc; strains as affected by N source and light intensity. J. Biotechnol. 2003, 102, 143–152. PubMed

Pereira, S. , et al., Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 2009, 33, 917–941. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...