Hibberdia magna (Chrysophyceae): a promising freshwater fucoxanthin and polyunsaturated fatty acid producer

. 2023 Apr 19 ; 22 (1) : 73. [epub] 20230419

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37076862

Grantová podpora
TN010000048/03 Technologická Agentura České Republiky

Odkazy

PubMed 37076862
PubMed Central PMC10116740
DOI 10.1186/s12934-023-02061-x
PII: 10.1186/s12934-023-02061-x
Knihovny.cz E-zdroje

BACKGROUND: Algae are prominent producers of carotenoids and polyunsaturated fatty acids which are greatly prized in the food and pharmaceutic industry. Fucoxanthin represents a notable high-value carotenoid produced exclusively by algae. Its benefits range far beyond just antioxidant activity and include cancer prevention, anti-diabetes, anti-obesity, and many other positive effects. Accordingly, large-scale microalgae cultivation to produce fucoxanthin and polyunsaturated fatty acids is still under intensive development in the commercial and academic sectors. Industrially exploitable strains are predominantly derived from marine species while comparable freshwater fucoxanthin producers have yet to be explored. RESULTS: In this study, we searched for freshwater fucoxanthin producers among photoautotrophic flagellates including members of the class Chrysophyceae. The initial screening turned our attention to the chrysophyte alga Hibberdia magna. We performed a comprehensive cultivation experiments using a temperature × light cross-gradient to assess the impact of these conditions on the target compounds productivity. Here we present the observations that H. magna simultaneously produces fucoxanthin (max. 1.2% dry biomass) and polyunsaturated fatty acids (max. ~ 9.9% dry biomass) and is accessible to routine cultivation in lab-scale conditions. The highest biomass yields were 3.73 g L-1 accompanied by maximal volumetric productivity of 0.54 g L-1 d-1 which are comparable values to marine microalgae fucoxanthin producers in phototrophic mode. H. magna demonstrated different optimal conditions for biomass, fucoxanthin, and fatty acid accumulation. While maximal fucoxanthin productivities were obtained in dim light and moderate temperatures (23 °C× 80 µmol m-2 s-1), the highest PUFA and overall biomass productivities were found in low temperature and high light (17-20 °C × 320-480 µmol m-2 s-1). Thus, a smart biotechnology setup should be designed to fully utilize H. magna biotechnological potential. CONCLUSIONS: Our research brings pioneer insight into the biotechnology potential of freshwater autotrophic flagellates and highlights their ability to produce high-value compounds. Freshwater fucoxanthin-producing species are of special importance as the use of sea-water-based media may increase cultivation costs and prohibits inland microalgae production.

Zobrazit více v PubMed

Hibbeln JR, Nieminen LRG, Blasbalg TL, Riggs JA, Lands WEM. Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr. 2006 doi: 10.1093/ajcn/83.6.1483s. PubMed DOI

Sathasivam R, Ki JS. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs. 2018 doi: 10.3390/md16010026. PubMed DOI PMC

Borowitzka MA. High-value products from microalgae-their development and commercialisation. J Appl Phycol. 2013;25:743–756. doi: 10.1007/s10811-013-9983-9. DOI

Wang S, Wu S, Yang G, Pan K, Wang L, Hu Z. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnol Adv. 2021;53:107865. doi: 10.1016/j.biotechadv.2021.107865. PubMed DOI

Matsuno T. Aquatic animal carotenoids. Fish Sci. 2001;67:771–783. doi: 10.1046/j.1444-2906.2001.00323.x. DOI

Mikami K, Hosokawa M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int J Mol Sci. 2013;14:13763–13781. doi: 10.3390/ijms140713763. PubMed DOI PMC

Pajot A, Huynh GH, Picot L, Marchal L, Nicolau E. Fucoxanthin from algae to human, an extraordinary bioresource: insights and advances in up and downstream processes. Mar Drugs. 2022 doi: 10.3390/md20040222. PubMed DOI PMC

Gammone MA, D’Orazio N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar Drugs. 2015;13:2196–2214. doi: 10.3390/md13042196. PubMed DOI PMC

Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom odontella aurita. Mar Drugs. 2013;11:2667–2681. doi: 10.3390/md11072667. PubMed DOI PMC

Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs. 2011;9:1806–1828. doi: 10.3390/md9101806. PubMed DOI PMC

Zarekarizi A, Hoffmann L, Burritt D. Approaches for the sustainable production of fucoxanthin, a xanthophyll with potential health benefits. J Appl Phycol. 2019;31:281–299. doi: 10.1007/s10811-018-1558-3. DOI

Leong YK, Chen CY, Varjani S, Chang JS. Producing fucoxanthin from algae—Recent advances in cultivation strategies and downstream processing. Bioresour Technol. 2022;344:126170. doi: 10.1016/j.biortech.2021.126170. PubMed DOI

Jovanovic S, Dietrich D, Becker J, Kohlstedt M, Wittmann C. Microbial production of polyunsaturated fatty acids—high-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr Opin Biotechnol. 2021;69:199–211. doi: 10.1016/j.copbio.2021.01.009. PubMed DOI

Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res. 2019;74:31–68. doi: 10.1016/j.plipres.2019.01.003. PubMed DOI

Castro LFC, Tocher DR, Monroig O. Long-chain polyunsaturated fatty acid biosynthesis in chordates: insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res. 2016;62:25–40. doi: 10.1016/j.plipres.2016.01.001. PubMed DOI

Guillou H, Zadravec D, Martin PGP, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res. 2010;49:186–199. doi: 10.1016/j.plipres.2009.12.002. PubMed DOI

Magoni C, Bertacchi S, Giustra CM, Guzzetti L, Cozza R, Ferrari M, et al. Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends Food Sci Technol. 2022;121:142–155. doi: 10.1016/j.tifs.2022.01.030. DOI

Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol. 2016 doi: 10.3389/fmicb.2016.00546. PubMed DOI PMC

Yang R, Wei D, Xie J. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit Rev Biotechnol. 2020;40:993–1009. doi: 10.1080/07388551.2020.1805402. PubMed DOI

Lu Z, Loftus S, Sha J, Wang W, Park MS, Zhang X, et al. Water reuse for sustainable microalgae cultivation: Current knowledge and future directions. Resour Conserv Recycl. 2020;161:104975. doi: 10.1016/j.resconrec.2020.104975. DOI

Belcher JH. Chrysosphaera magna sp Nov, a new coccoid member of the Chrysophyceae. Br Phycol J. 1974;9:139–144. doi: 10.1080/00071617400650171. DOI

Andersen RA. Absolute orientation of the flagellar apparatus of Hibberdia magna comb nov ( Chrysophyceae ) Nord J Bot. 1989 doi: 10.1111/j.1756-1051.1989.tb01742.x. DOI

Andersen RA, Van Peer Y, De PD, Sexton JP, Kawachi M, LaJeunesse T. Phylogenetic analysis of the SSU rRNA from members of the chrysophyceae. Protist. 1999;150:71–84. doi: 10.1016/S1434-4610(99)70010-6. PubMed DOI

Škaloud P, Kristiansen J, Škaloudová M. Developments in the taxonomy of silica-scaled chrysophytes—from morphological and ultrastructural to molecular approaches. Nord J Bot. 2013;31:385–402. doi: 10.1111/j.1756-1051.2013.00119.x. DOI

Petrushkina M, Gusev E, Sorokin B, Zotko N, Mamaeva A, Filimonova A, et al. Fucoxanthin production by heterokont microalgae. Algal Res. 2017;24:387–393. doi: 10.1016/j.algal.2017.03.016. DOI

Gérin S, Delhez T, Corato A, Remacle C, Franck F. A novel culture medium for freshwater diatoms promotes efficient photoautotrophic batch production of biomass, fucoxanthin, and eicosapentaenoic acid. J Appl Phycol. 2020;32:1581–1596. doi: 10.1007/s10811-020-02097-1. DOI

Gao L, Wang F, Wu T, Zhou Q, Zhang D, Hou X, et al. New insights into the production of fucoxanthin by mixotrophic cultivation of Ochromonas and Microcystis aeruginosa. Bioresour Technol. 2022 doi: 10.1016/j.biortech.2022.127922. PubMed DOI

Ma M, Wei C, Chen M, Wang H, Gong Y, Hu Q. Effects of nutritional mode on the physiological and biochemical characteristics of the mixotrophic flagellate Poterioochromonas malhamensis and the potential ecological implications. Microorganisms. 2022 doi: 10.3390/microorganisms10050852. PubMed DOI PMC

Klaveness D. Hydrurus foetidus (Chrysophyceae)—an inland macroalga with potential. J Appl Phycol. 2017;29:1485–1491. doi: 10.1007/s10811-016-1047-5. DOI

Wacker A, Piepho M, Harwood JL, Guschina IA, Arts MT. Light-Induced changes in fatty acid profiles of specific lipid classes in several freshwater phytoplankton species. Front Plant Sci. 2016;7:264. doi: 10.3389/fpls.2016.00264. PubMed DOI PMC

Ruffell SE, Packull-McCormick SR, McConkey BJ, Müller KM. Nutritional characteristics of the potential aquaculture feed species Boekelovia hooglandii. Aquaculture. 2017;474:113–120. doi: 10.1016/j.aquaculture.2017.03.028. DOI

Borowitzka MA. Microalgae for aquaculture: opportunities and constraints. J Appl Phycol. 1997;9:393–401. doi: 10.1023/A:1007921728300. DOI

Gao F, Teles(CabanelasITD) I, Wijffels RH, Barbosa MJ. Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresour Technol. 2020 doi: 10.1016/j.biortech.2020.123894. PubMed DOI

Remmers IM, Wijffels RH, Barbosa MJ, Lamers PP. Can we approach theoretical lipid yields in microalgae? Trends Biotechnol. 2018;36:265–276. doi: 10.1016/j.tibtech.2017.10.020. PubMed DOI

Přibyl P, Cepák V, Zachleder V. Production of lipids in 10 strains of chlorella and parachlorella, and enhanced lipid productivity in chlorella vulgaris. Appl Microbiol Biotechnol. 2012;94:549–561. doi: 10.1007/s00253-012-3915-5. PubMed DOI

Kuczynska P, Jemiola-Rzeminska M, Strzalka K. Photosynthetic pigments in diatoms. Mar Drugs. 2015;13:5847–5881. doi: 10.3390/md13095847. PubMed DOI PMC

Wang S, Verma SK, Hakeem Said I, Thomsen L, Ullrich MS, Kuhnert N. Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microb Cell Fact. 2018;17:1–13. doi: 10.1186/s12934-018-0957-0. PubMed DOI PMC

Li Y, Sun H, Wang Y, Yang S, Wang J, Wu T, et al. Integrated metabolic tools reveal carbon alternative in Isochrysis zhangjiangensis for fucoxanthin improvement. Bioresour Technol. 2022;347:126401. doi: 10.1016/j.biortech.2021.126401. PubMed DOI

Lu X, Sun H, Zhao W, Cheng KW, Chen F, Liu B. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Drugs. 2018 doi: 10.3390/md16070219. PubMed DOI PMC

Mohamadnia S, Tavakoli O, Faramarzi MA. Enhancing production of fucoxanthin by the optimization of culture media of the microalga Tisochrysis lutea. Aquaculture. 2021;533:736074. doi: 10.1016/j.aquaculture.2020.736074. DOI

Alishah Aratboni H, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact. 2019;18:1–17. doi: 10.1186/s12934-019-1228-4. PubMed DOI PMC

Lang I, Hodac L, Friedl T, Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11:1–16. doi: 10.1186/1471-2229-11-124. PubMed DOI PMC

Mitani E, Nakayama F, Matsuwaki I, Ichi I, Kawabata A, Kawachi M, et al. Fatty acid composition profiles of 235 strains of three microalgal divions within the NIES microbial culture collection. Microb Resour Syst. 2017;33:19–29.

Cepák V, Přibyl P, Kohoutková J, Kaštánek P. Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol. 2014;26:181–190. doi: 10.1007/s10811-013-0119-z. DOI

Marella TK, Tiwari A. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresour Technol. 2020 doi: 10.1016/j.biortech.2020.123245. PubMed DOI

Wang H, Zhang Y, Chen L, Cheng W, Liu T. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and cylindrotheca fusiformis cultures. Bioprocess Biosyst Eng. 2018;41:1061–1071. doi: 10.1007/s00449-018-1935-y. PubMed DOI

Gao F, Cabanelas ITD, Wijffels RH, Barbosa MJ. Fucoxanthin and docosahexaenoic acid production by cold-adapted Tisochrysis lutea. N Biotechnol. 2022;66:16–24. doi: 10.1016/j.nbt.2021.08.005. PubMed DOI

Guil-Guerrero JL. Stearidonic acid (18:4n–3): Metabolism, nutritional importance, medical uses and natural sources. Eur J Lipid Sci Technol. 2007;109:1226–1236. doi: 10.1002/ejlt.200700207. DOI

Whelan J. Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J Nutr. 2009;139:5–10. doi: 10.3945/jn.108.094268. PubMed DOI

Perdana BA, Chaidir Z, Kusnanda AJ, Dharma A, Zakaria IJ, et al. Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. Algal Res. 2021;60:102542. doi: 10.1016/j.algal.2021.102542. DOI

Popovich CA, Faraoni MB, Sequeira A, Daglio Y, Martín LA, Martínez AM, et al. Potential of the marine diatom Halamphora coffeaeformis to simultaneously produce omega-3 fatty acids, chrysolaminarin and fucoxanthin in a raceway pond. Algal Res. 2020;51:102030. doi: 10.1016/j.algal.2020.102030. DOI

Zhang H, Gong P, Cai Q, Zhang C, Gao B. Maximizing fucoxanthin production in Odontella aurita by optimizing the ratio of red and blue light-emitting diodes in an auto-controlled internally illuminated photobioreactor. Bioresour Technol. 2022;344:126260. doi: 10.1016/j.biortech.2021.126260. PubMed DOI

Bock C, Olefeld JL, Vogt JC, Albach DC, Boenigk J. Phylogenetic and functional diversity of chrysophyceae in inland waters. Org Divers Evol. 2022;22:327–341. doi: 10.1007/s13127-022-00554-y. DOI

Škaloud P, Škaloudová M, Pichrtová M, Němcová Y, Kreidlová J, Pusztai M. www.chrysophytes.eu a database on distribution and ecology of silica-scaled chrysophytes in Europe. Nov Hedwigia 142:141–6. 2013

Guillard RRL, Lorenzen CJ. Yellow-green algae with chlorophyllide C 1, 2. J Phycol. 1972;8:10–14. doi: 10.1111/j.1529-8817.1972.tb03995.x. DOI

Kvíderová J, Kumar D, Lukavský J, Kaštánek P, Adhikary SP. Estimation of growth and exopolysaccharide production by two soil cyanobacteria, scytonema tolypothrichoides and tolypothrix bouteillei as determined by cultivation in irradiance and temperature crossed gradients. Eng Life Sci. 2019;19:184–195. doi: 10.1002/elsc.201800082. PubMed DOI PMC

Van Heukelem L, Thomas CS. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A. 2001;910:31–49. doi: 10.1016/S0378-4347(00)00603-4. PubMed DOI

Swintek J, Etterson M, Flynn K, Johnson R. Optimized temporal sampling designs of the Weibull growth curve with extensions to the von Bertalanffy model. Environmetrics. 2019;30:1–14. doi: 10.1002/env.2552. DOI

Wen Y, Liu K, Liu H, Cao H, Mao H, Dong X, et al. Comparison of nine growth curve models to describe growth of partridges(Alectoris chukar) J Appl Anim Res. 2019;47:195–200. doi: 10.1080/09712119.2019.1599900. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Systemic analysis of lipid metabolism from individuals to multi-organism systems

. 2024 Oct 28 ; 20 (9) : 570-583. [epub] 20241028

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...