Associations Between Glycemic Traits and Colorectal Cancer: A Mendelian Randomization Analysis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
U01 CA182883
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
G1000143
Medical Research Council - United Kingdom
R01 CA244588
NCI NIH HHS - United States
MC_UU_00006/1
Medical Research Council - United Kingdom
001
World Health Organization - International
29019
Cancer Research UK - United Kingdom
C18281/A29019
Cancer Research UK - United Kingdom
PubMed
35048991
PubMed Central
PMC9086764
DOI
10.1093/jnci/djac011
PII: 6512063
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie MeSH
- diabetes mellitus 2. typu * komplikace epidemiologie genetika MeSH
- glykovaný hemoglobin analýza MeSH
- hyperinzulinismus * komplikace genetika MeSH
- inzulin MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory * komplikace epidemiologie genetika MeSH
- krevní glukóza analýza genetika MeSH
- lidé MeSH
- mendelovská randomizace MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykovaný hemoglobin MeSH
- inzulin MeSH
- krevní glukóza MeSH
BACKGROUND: Glycemic traits-such as hyperinsulinemia, hyperglycemia, and type 2 diabetes-have been associated with higher colorectal cancer risk in observational studies; however, causality of these associations is uncertain. We used Mendelian randomization (MR) to estimate the causal effects of fasting insulin, 2-hour glucose, fasting glucose, glycated hemoglobin (HbA1c), and type 2 diabetes with colorectal cancer. METHODS: Genome-wide association study summary data were used to identify genetic variants associated with circulating levels of fasting insulin (n = 34), 2-hour glucose (n = 13), fasting glucose (n = 70), HbA1c (n = 221), and type 2 diabetes (n = 268). Using 2-sample MR, we examined these variants in relation to colorectal cancer risk (48 214 case patient and 64 159 control patients). RESULTS: In inverse-variance models, higher fasting insulin levels increased colorectal cancer risk (odds ratio [OR] per 1-SD = 1.65, 95% confidence interval [CI] = 1.15 to 2.36). We found no evidence of any effect of 2-hour glucose (OR per 1-SD = 1.02, 95% CI = 0.86 to 1.21) or fasting glucose (OR per 1-SD = 1.04, 95% CI = 0.88 to 1.23) concentrations on colorectal cancer risk. Genetic liability to type 2 diabetes (OR per 1-unit increase in log odds = 1.04, 95% CI = 1.01 to 1.07) and higher HbA1c levels (OR per 1-SD = 1.09, 95% CI = 1.00 to 1.19) increased colorectal cancer risk, although these findings may have been biased by pleiotropy. Higher HbA1c concentrations increased rectal cancer risk in men (OR per 1-SD = 1.21, 95% CI = 1.05 to 1.40), but not in women. CONCLUSIONS: Our results support a causal effect of higher fasting insulin, but not glucose traits or type 2 diabetes, on increased colorectal cancer risk. This suggests that pharmacological or lifestyle interventions that lower circulating insulin levels may be beneficial in preventing colorectal tumorigenesis.
Bristol Medical School Department of Population Health Sciences University of Bristol Bristol UK
Cancer Epidemiology Unit Nuffield Department of Population Health University of Oxford Oxford UK
Computational Medicine Berlin Institute of Health Charité University Medicine Berlin Germany
Department of Epidemiology Harvard T H Chan School of Public Health Harvard University Boston MA USA
Department of Epidemiology University of Washington Seattle WA USA
Department of Hygiene and Epidemiology University of Ioannina School of Medicine Ioannina Greece
Department of Nutrition Harvard T H Chan School of Public Health Boston MA USA
Department of Pathology and Laboratory Medicine Mayo Clinic Arizona Scottsdale AZ USA
Department of Preventive Medicine USC Norris Comprehensive Cancer Center CA USA
Department of Radiation Sciences Oncology Umeå University Umeå Sweden
Division of Gastroenterology Massachusetts General Hospital and Harvard Medical School Boston MA USA
Division of Human Nutrition and Health Wageningen University and Research Wageningen the Netherlands
Exeter Centre of Excellence in Diabetes Exeter Medical School University of Exeter Exeter UK
Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic
Health Data Research UK Wellcome Genome Campus and University of Cambridge Cambridge UK
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
Keck School of Medicine University of Southern California Los Angeles CA USA
MRC Epidemiology Unit University of Cambridge Cambridge UK
Nutrition and Metabolism Branch International Agency for Research on Cancer Lyon France
Prevention and Cancer Control Clinical Institutes and Quality Programs Ontario Health Ontario Canada
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle WA USA
School of Cellular and Molecular Medicine University of Bristol Bristol UK
University of Southern California Preventative Medicine Los Angeles CA USA
Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
Zobrazit více v PubMed
WCRF-AICR. Diet, nutrition, physical activity and colorectal cancer. Continuous update project. https://www.wcrf.org/wp-content/uploads/2021/02/Colorectal-cancer-report.pdf (Accessed 20 September 2021).
Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K; International Agency for Research on Cancer Handbook Working Group. Body fatness and cancer — viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794–798. PubMed PMC
Bull CJ, Bell JA, Murphy N, et al. Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Med. 2020;18(1):396. PubMed PMC
Murphy N, Jenab M, Gunter MJ. Adiposity and gastrointestinal cancers: epidemiology, mechanisms and future directions. Nat Rev Gastroenterol Hepatol. 2018;15(11):659–670. PubMed
Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JPA. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607. PubMed
Pearson-Stuttard J, Papadimitriou N, Markozannes G, et al. Type 2 diabetes and cancer: an umbrella review of observational and Mendelian randomisation studies. Cancer Epidemiol Biomarkers Prev. 2021;30(6):1218–1228. PubMed PMC
Goto A, Yamaji T, Sawada N, et al. Diabetes and cancer risk: a Mendelian randomization study. Int J Cancer. 2020;146(3):712–719. PubMed PMC
Yuan S, Kar S, Carter P, et al. Is type 2 diabetes causally associated with cancer risk? Evidence from a two-sample mendelian randomization study. Diabetes. 2020;69(7):1588–1596. PubMed PMC
Rinaldi S, Rohrmann S, Jenab M, et al. Glycosylated hemoglobin and risk of colorectal cancer in men and women, the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2008;17(11):3108–3115. PubMed
Dashti SG, Viallon V, Simpson JA, et al. Explaining the link between adiposity and colorectal cancer risk in men and postmenopausal women in the UK Biobank: a sequential causal mediation analysis. Int J Cancer. 2020;147(7):1881–1894. PubMed
Peila R, Rohan TE. Diabetes, glycated hemoglobin, and risk of cancer in the UK Biobank study. Cancer Epidemiol Biomarkers Prev. 2020;29(6):1107–1119. PubMed
Xu J, Ye Y, Wu H, et al. Association between markers of glucose metabolism and risk of colorectal cancer. BMJ Open. 2016;6(6):e011430. PubMed PMC
Lin J, Ridker PM, Pradhan A, et al. Hemoglobin A1c concentrations and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev. 2005;14(12):3010–3012. PubMed PMC
Pang Y, Kartsonaki C, Guo Y, et al. Diabetes, plasma glucose and incidence of colorectal cancer in Chinese adults: a prospective study of 0.5 million people. J Epidemiol Community Health. 2018;72(10):919–925. PubMed PMC
Myte R, Gylling B, Häggström J, et al. Metabolic factors and the risk of colorectal cancer by KRAS and BRAF mutation status. Int J Cancer. 2019;145(2):327–337. PubMed
Chen L, Li L, Wang Y, et al. Circulating C-peptide level is a predictive factor for colorectal neoplasia: evidence from the meta-analysis of prospective studies. Cancer Causes Control. 2013;24(10):1837–1847. PubMed
Ma J, Giovannucci E, Pollak M, et al. A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Cancer Inst. 2004;96(7):546–553. PubMed
Kaaks R, Toniolo P, Akhmedkhanov A, et al. Serum C-peptide, Insulin-Like Growth Factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst. 2000;92(19):1592–1600. PubMed
Schoen RE, Tangen CM, Kuller LH, et al. Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst. 1999;91(13):1147–1154. PubMed
Limburg PJ, Stolzenberg-Solomon RZ, Vierkant RA, et al. Insulin, glucose, insulin resistance and incident colorectal cancer in male smokers. Clin Gastroenterol Hepatol. 2006;4(12):1514–1521. PubMed PMC
Gunter MJ, Hoover DR, Yu H, et al. Insulin, insulin-like growth factor-I, endogenous estradiol, and risk of colorectal cancer in postmenopausal women. Cancer Res. 2008;68(1):329–337. PubMed PMC
Palmqvist R, Stattin P, Rinaldi S, et al. Plasma insulin, IGF-binding proteins-1 and -2 and risk of colorectal cancer: a prospective study in Northern Sweden. Int J Cancer. 2003;107(1):89–93. PubMed
Saydah SH, Platz EA, Rifai N, Pollak MN, Brancati FL, Helzlsouer KJ. Association of markers of insulin and glucose control with subsequent colorectal cancer risk. cancer. Epidemiol Biomarkers Prev. 2003;12(5):412–418. PubMed
Myte R, Harlid S, Sundkvist A, et al. A longitudinal study of prediagnostic metabolic biomarkers and the risk of molecular subtypes of colorectal cancer. Sci Rep. 2020;10(1):5336. PubMed PMC
Huyghe JR, Bien SA, Harrison TA, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51(1):76–87. PubMed PMC
Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–1513. PubMed PMC
NealeLab. UK Biobank GWAS Results. 2019; http://www.nealelab.is/uk-biobank. Accessed September 30, 2019.
Chen J, Spracklen CN, Marenne G, et al.; Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC). The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53(6):840–860. PubMed PMC
Chen J, Spracklen CN, Marenne G, et al. The trans-ancestral genomic architecture of glycaemic traits. bioRxiv. 2020;2020.07.23.217646. doi: 2020.2007.2023.217646. PubMed
Fred Hutchinson Cancer Research Center. Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). https://www.fredhutch.org/en/research/divisions/public-health-sciences-division/research/cancer-prevention/genetics-epidemiology-colorectal-cancer-consortium-gecco.html. Accessed September 16, 2021.
FinnGen Consortium. FinnGen documentation of R4 Release. https://finngen.gitbook.io/documentation/. Accessed September 20, 2021.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Sta Soc Ser B Methodol. 1995;57(1):289–300.
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–525. PubMed PMC
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–314. PubMed PMC
Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–698. PubMed PMC
Yavorska OO, Burgess S. Mendelian randomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–1739. PubMed PMC
Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–928. PubMed
Gallagher EJ, LeRoith D. Hyperinsulinaemia in cancer. Nat Rev Cancer. 2020;20(11):629–644. PubMed
Tran TT, Naigamwalla D, Oprescu AI, et al. Hyperinsulinemia, but not other factors associated with insulin resistance, acutely enhances colorectal epithelial proliferation in vivo. Endocrinology. 2006;147(4):1830–1837. PubMed
Kiunga GA, Raju J, Sabljic N, Bajaj G, Good CK, Bird RP. Elevated insulin receptor protein expression in experimentally induced colonic tumors. Cancer Letters. 2004;211(2):145–153. PubMed
Santoro MA, Andres SF, Galanko JA, Sandler RS, Keku TO, Lund PK. Reduced insulin-like growth factor I receptor and altered insulin receptor isoform mRNAs in normal mucosa predict colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2014;23(10):2093–2100. PubMed PMC
Rapp K, Schroeder J, Klenk J, et al. Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia. 2006;49(5):945–952. PubMed
Stattin PR, BjöR O, Ferrari P, et al. Prospective study of hyperglycemia and cancer risk. Diabetes Care. 2007;30(3):561–567. PubMed
Kabat GC, Kim MY, Strickler HD, et al. A longitudinal study of serum insulin and glucose levels in relation to colorectal cancer risk among postmenopausal women. Br J Cancer. 2012;106(1):227–232. PubMed PMC
Murphy N, Ward HA, Jenab M, et al. Heterogeneity of colorectal cancer risk factors by anatomical subsite in 10 European countries: a multinational cohort study. Clin Gastroenterol Hepatol. 2019;17(7):1323–1331. PubMed PMC
Huyghe JR, Harrison TA, Bien SA, et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut. 2021;70(7):1325–1334. PubMed PMC
Wang L, Lo C-H, He X, et al. Risk factor profiles differ for cancers of different regions of the colorectum. Gastroenterology. 2020;159(1):241–256.e213. PubMed PMC
Hu Y, Zhang X, Ma Y, et al. Incident type 2 diabetes duration and cancer risk: a prospective study in two US cohorts. J Natl Cancer Inst. 2021;113(4):381–389. PubMed PMC
Walker VM, Harrison S, Carter AR, Gill D, Tzoulaki I, Davies NM. The consequences of adjustment, correction and selection in genome-wide association studies used for two-sample Mendelian randomization. medRxiv. 2021. doi:2020.2007.2013.20152413.
Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–1501. PubMed PMC