Probing the diabetes and colorectal cancer relationship using gene - environment interaction analyses
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, P.H.S.
Grant support
R01 CA137178
NCI NIH HHS - United States
R01 CA059045
NCI NIH HHS - United States
U24 CA074794
NCI NIH HHS - United States
R01 CA066635
NCI NIH HHS - United States
R01 CA242218
NCI NIH HHS - United States
P30 CA014089
NCI NIH HHS - United States
K05 CA154337
NCI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
R01 CA201407
NCI NIH HHS - United States
U01 CA063464
NCI NIH HHS - United States
U01 AG018033
NIA NIH HHS - United States
U01 CA086308
NCI NIH HHS - United States
HHSN268201600001C
NHLBI NIH HHS - United States
S10 OD028685
NIH HHS - United States
P30 CA006973
NCI NIH HHS - United States
HHSN268201600003C
NHLBI NIH HHS - United States
P30 DK034987
NIDDK NIH HHS - United States
14136
Cancer Research UK - United Kingdom
U01 CA137088
NCI NIH HHS - United States
R01 CA076366
NCI NIH HHS - United States
R01 CA143237
NCI NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
T32 ES013678
NIEHS NIH HHS - United States
UG1 CA189974
NCI NIH HHS - United States
R01 CA151993
NCI NIH HHS - United States
C18281/A29019
Cancer Research UK - United Kingdom
R37 CA054281
NCI NIH HHS - United States
U01 CA206110
NCI NIH HHS - United States
1000143
Medical Research Council - United Kingdom
R35 CA197735
NCI NIH HHS - United States
29019
Cancer Research UK - United Kingdom
HHSN268201600002C
NHLBI NIH HHS - United States
UM1 CA182883
NCI NIH HHS - United States
HHSN268201600004C
NHLBI NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
UM1 CA167552
NCI NIH HHS - United States
U01 HG004438
NHGRI NIH HHS - United States
U01 HG004446
NHGRI NIH HHS - United States
R01 CA155101
NCI NIH HHS - United States
HHSN268201600018C
NHLBI NIH HHS - United States
C588/A19167
Cancer Research UK - United Kingdom
U10 CA037429
NCI NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
U01 CA074794
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
U01 CA164930
NCI NIH HHS - United States
R01 CA136726
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
P01 CA055075
NCI NIH HHS - United States
R03 CA153323
NCI NIH HHS - United States
P01 CA196569
NCI NIH HHS - United States
001
World Health Organization - International
R01 CA097325
NCI NIH HHS - United States
HHSN268201200008I
NHLBI NIH HHS - United States
K05 CA152715
NCI NIH HHS - United States
R01 CA197350
NCI NIH HHS - United States
R01 CA072520
NCI NIH HHS - United States
MR/M012190/1
Medical Research Council - United Kingdom
R01 CA206279
NCI NIH HHS - United States
KL2 TR000421
NCATS NIH HHS - United States
R01 CA081488
NCI NIH HHS - United States
P01 CA033619
NCI NIH HHS - United States
U01 CA074783
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
PubMed
37365285
PubMed Central
PMC10403521
DOI
10.1038/s41416-023-02312-z
PII: 10.1038/s41416-023-02312-z
Knihovny.cz E-resources
- MeSH
- Genome-Wide Association Study methods MeSH
- Diabetes Mellitus * genetics MeSH
- Genetic Predisposition to Disease MeSH
- Gene-Environment Interaction MeSH
- Polymorphism, Single Nucleotide MeSH
- Colorectal Neoplasms * genetics MeSH
- Humans MeSH
- Microfilament Proteins genetics MeSH
- Risk Factors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Names of Substances
- LRCH1 protein, human MeSH Browser
- Microfilament Proteins MeSH
BACKGROUND: Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. METHODS: We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). RESULTS: Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value3-d.f.: 5.46 × 10-11) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value2-d.f.: 7.84 × 10-09). DISCUSSION: These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
Bioinformatics and Data Science Research Center Bina Nusantara University Jakarta Indonesia
Biostatistics Division Kaiser Permanente Washington Health Research Institute Seattle WA USA
Broad Institute of Harvard and MIT Cambridge MA USA
Cancer Epidemiology Division Cancer Council Victoria Melbourne VIC Australia
Center for Cancer Research Medical University of Vienna Vienna Austria
Center for Gastrointestinal Biology and Disease University of North Carolina Chapel Hill NC USA
CIBER Epidemiología y Salud Pública Madrid Spain
Clalit National Cancer Control Center Haifa Israel
Computer Science Department School of Computer Science Bina Nusantara University Jakarta Indonesia
Consortium for Biomedical Research in Epidemiology and Public Health Barcelona 08908 Spain
Department of Biostatistics University of Washington Seattle WA USA
Department of Clinical Sciences Faculty of Medicine University of Barcelona Barcelona 08908 Spain
Department of Community Medicine and Epidemiology Lady Davis Carmel Medical Center Haifa Israel
Department of Computer Science Stanford University Stanford CA USA
Department of Epidemiology and Population Health Albert Einstein College of Medicine Bronx NY USA
Department of Epidemiology Geisel School of Medicine at Dartmouth Hanover NH USA
Department of Epidemiology Harvard T H Chan School of Public Health Harvard University Boston MA USA
Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
Department of Epidemiology School of Public Health University of Washington Seattle WA USA
Department of Family Medicine University of Virginia Charlottesville VA USA
Department of General Surgery University of Virginia School of Medicine Charlottesville VA USA
Department of Genetics and Genome Sciences Case Western Reserve University Cleveland OH USA
Department of Genetics Stanford University Stanford CA USA
Department of Hygiene and Epidemiology University of Ioannina School of Medicine Ioannina Greece
Department of Laboratory Medicine and Pathology Mayo Clinic Arizona Scottsdale AZ USA
Department of Medicine and Epidemiology University of Pittsburgh Medical Center Pittsburgh PA USA
Department of Nutritional Sciences University of Michigan School of Public Health Ann Arbor MI USA
Department of Population Health Sciences University of Utah Salt Lake City UH USA
Department of Population Science American Cancer Society Atlanta GA USA
Department of Public Health and Primary Care University of Cambridge Cambridge UK
Department of Public Health Sciences Center for Public Health Genomics Charlottesville VA USA
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Gastroenterology Massachusetts General Hospital and Harvard Medical School Boston MA USA
Division of Human Nutrition and Health Wageningen University and Research Wageningen The Netherlands
Division of Preventive Oncology German Cancer Research Center Heidelberg Germany
Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic
German Cancer Consortium Heidelberg Germany
Huntsman Cancer Institute University of Utah Salt Lake City UT USA
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
Leeds Institute of Cancer and Pathology University of Leeds Leeds UK
Lunenfeld Tanenbaum Research Institute Mount Sinai Hospital University of Toronto Toronto ON Canada
Medical Faculty Heidelberg Heidelberg University Heidelberg Germany
Memorial University of Newfoundland Discipline of Genetics St John's NL Canada
Nantes Université CHU Nantes Service de Génétique médicale F 44000 Nantes France
Nutrition and Metabolism Branch International Agency for Research on Cancer Lyon France
ONCOBEL Program Bellvitge Biomedical Research Institute L'Hospitalet de Llobregat Barcelona Spain
Public Health Sciences Division Fred Hutchinson Cancer Center Seattle WA USA
Research Centre for Hauora and Health Massey University Wellington New Zealand
Ruth and Bruce Rappaport Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
School of Public Health Capital Medical University Beijing China
School of Public Health Imperial College London London United Kingdom
School of Public Health University of Washington Seattle WA USA
Slone Epidemiology Center at Boston University Boston MA USA
SWOG Statistical Center Fred Hutchinson Cancer Center Seattle WA USA
University Medical Centre Hamburg Eppendorf University Cancer Centre Hamburg Hamburg Germany
See more in PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. doi: 10.3322/caac.21660. PubMed DOI
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51:76–87. doi: 10.1038/s41588-018-0286-6. PubMed DOI PMC
Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, et al. Novel common genetic susceptibility loci for colorectal cancer. J Natl Cancer Inst. 2019;111:146–57.. doi: 10.1093/jnci/djy099. PubMed DOI PMC
Pearson-Stuttard J, Papadimitriou N, Markozannes G, Cividini S, Kakourou A, Gill D, et al. Type 2 diabetes and cancer: an umbrella review of observational and Mendelian randomisation studies. Cancer Epidemiol. Biomarkers Prev. 2021;30:1218–28. PubMed PMC
Chang CK, Ulrich CM. Hyperinsulinaemia and hyperglycaemia: possible risk factors of colorectal cancer among diabetic patients. Diabetologia. 2003;46:595–607. doi: 10.1007/s00125-003-1109-5. PubMed DOI
Yang T, Li X, Montazeri Z, Little J, Farrington SM, Ioannidis JPA, et al. Gene-environment interactions and colorectal cancer risk: an umbrella review of systematic reviews and meta-analyses of observational studies. Int J Cancer. 2019;145:2315–29.. doi: 10.1002/ijc.32057. PubMed DOI PMC
Sainz J, Rudolph A, Hoffmeister M, Frank B, Brenner H, Chang-Claude J, et al. Effect of type 2 diabetes predisposing genetic variants on colorectal cancer risk. J Clin Endocrinol Metab. 2012;97:E845–51. doi: 10.1210/jc.2011-2565. PubMed DOI
Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology. 2013;144:799–807.e24. doi: 10.1053/j.gastro.2012.12.020. PubMed DOI PMC
Schumacher FR, Schmit SL, Jiao S, Edlund CK, Wang H, Zhang B, et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat Commun. 2015;6:7138. doi: 10.1038/ncomms8138. PubMed DOI PMC
Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, et al. Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res. 2012;72:2036–44. doi: 10.1158/0008-5472.CAN-11-4067. PubMed DOI PMC
Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7. doi: 10.1038/ng.3656. PubMed DOI PMC
Morrison J. Binarydosage: a package to create, merge, and read binary genotype files. Version 1.0. https://cran.rstudio.com/web/packages/BinaryDosage. 2020.
Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20:3875–89. doi: 10.1002/sim.1009. PubMed DOI
Cochran WG. The combination of estimates from different experiments. Int. Biometric Soc. 1954;10:101–29.
Morrison J, Gauderman J. GxEScanR: an R package to detect GxE interactions in a genomewide association study. Version 2.0 https://github.com/USCbiostats/GxEScanR. 2020.
Gauderman WJ, Zhang P, Morrison JL, Lewinger JP. Finding novel genes by testing G x E interactions in a genome-wide association study. Genet Epidemiol. 2013;37:603–13. doi: 10.1002/gepi.21748. PubMed DOI PMC
Gauderman WJ, Kim A, Conti DV, Morrison J, Thomas DC, Vora H, et al. A unified model for the analysis of gene-environment interaction. Am J Epidemiol. 2019;188:760–7. doi: 10.1093/aje/kwy278. PubMed DOI PMC
Kooperberg C, Leblanc M. Increasing the power of identifying gene x gene interactions in genome-wide association studies. Genet Epidemiol. 2008;32:255–63. doi: 10.1002/gepi.20300. PubMed DOI PMC
Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment interaction in genome-wide association studies. Am J Epidemiol. 2009;169:219–26. doi: 10.1093/aje/kwn353. PubMed DOI PMC
Ionita-Laza I, McQueen MB, Laird NM, Lange C. Genomewide weighted hypothesis testing in family-based association studies, with an application to a 100K scan. Am J Hum Genet. 2007;81:607–14. doi: 10.1086/519748. PubMed DOI PMC
Kawaguchi E, Kim A, Lewinger JP, Gauderman WJ. A novel data-driven approach to two-stage hypothesis testing for discovery of gene-environment interactions. bioRxiv. https://www.biorxiv.org/content/10.1101/2022.06.14.496154v1.full 2022. DOI
Dai JY, Logsdon BA, Huang Y, Hsu L, Reiner AP, Prentice RL, et al. Simultaneously testing for marginal genetic association and gene-environment interaction. Am J Epidemiol. 2012;176:164–73. doi: 10.1093/aje/kwr521. PubMed DOI PMC
Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting gene-environment interaction to detect genetic associations. Hum Hered. 2007;63:111–9. doi: 10.1159/000099183. PubMed DOI
Zheng J, Li Y, Abecasis GR, Scheet P. A comparison of approaches to account for uncertainty in analysis of imputed genotypes. Genet Epidemiol. 2011;35:102–10. doi: 10.1002/gepi.20552. PubMed DOI PMC
Peeters PJ, Bazelier MT, Leufkens HG, de Vries F, De Bruin ML. The risk of colorectal cancer in patients with type 2 diabetes: associations with treatment stage and obesity. Diabetes Care. 2015;38:495–502. doi: 10.2337/dc14-1175. PubMed DOI
de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008;17:R122–8. doi: 10.1093/hmg/ddn288. PubMed DOI PMC
Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004. doi: 10.1111/j.0006-341X.1999.00997.x. PubMed DOI
Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7. doi: 10.1093/bioinformatics/btq419. PubMed DOI PMC
Diez-Obrero V, Dampier CH, Moratalla-Navarro F, Devall M, Plummer SJ, Diez-Villanueva A, et al. Genetic effects on transcriptome profiles in colon epithelium provide functional insights for genetic risk loci. Cell Mol Gastroenterol Hepatol. 2021;12:181–97.. doi: 10.1016/j.jcmgh.2021.02.003. PubMed DOI PMC
Cohen AJ, Saiakhova A, Corradin O, Luppino JM, Lovrenert K, Bartels CF, et al. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nat Commun. 2017;8:14400. doi: 10.1038/ncomms14400. PubMed DOI PMC
Lee J, Jolanki O, Kim D, Strattan JS, Kundaje A, Nordström K, et al. ENCODE-DCC/atac-seq-pipeline: v1.9.1. https://zenodo.org/record/4204092 2020.
Lee J, Strattan JS, Shcherbina A, Kagda M, Maurizio PL. ENCODE-DCC/chip-seq-pipeline2: v1.6.1. https://github.com/ENCODE-DCC/chip-seq-pipeline2 2020.
Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput experiments. Ann Appl Stat. 2011;5:1752–79.. doi: 10.1214/11-AOAS466. DOI
Lopez-Delisle L, Rabbani L, Wolff J, Bhardwaj V, Backofen R, Gruning B, et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics. 2021;37:422–3. doi: 10.1093/bioinformatics/btaa692. PubMed DOI PMC
Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis. Curr Protoc Bioinforma. 2014;47:1–34. PubMed PMC
Lee D. LS-GKM: a new gkm-SVM for large-scale datasets. Bioinformatics. 2016;32:2196–8. doi: 10.1093/bioinformatics/btw142. PubMed DOI PMC
Su YR, Di CZ, Hsu L, Genetics, Epidemiology of Colorectal Cancer C. A unified powerful set-based test for sequencing data analysis of GxE interactions. Biostatistics. 2017;18:119–31.. doi: 10.1093/biostatistics/kxw034. PubMed DOI PMC
Gallagher EJ, LeRoith D. Hyperinsulinaemia in cancer. Nat Rev Cancer. 2020;20:629–44.. doi: 10.1038/s41568-020-0295-5. PubMed DOI
Murphy N, Song M, Papadimitriou N, Carreras-Torres R, Langenberg C, Martin RM, et al. Associations between glycemic traits and colorectal cancer: a Mendelian randomization analysis. J Natl Cancer Inst. 2022;114:740–52.. doi: 10.1093/jnci/djac011. PubMed DOI PMC
Lichten LA, Cousins RJ. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 2009;29:153–76. doi: 10.1146/annurev-nutr-033009-083312. PubMed DOI
Jansen J, Karges W, Rink L. Zinc and diabetes-clinical links and molecular mechanisms. J Nutritional Biochem. 2009;20:399–417. doi: 10.1016/j.jnutbio.2009.01.009. PubMed DOI
Taylor CG. Zinc, the pancreas, and diabetes: insights from rodent studies and future directions. Biometals. 2005;18:305–12. doi: 10.1007/s10534-005-3686-x. PubMed DOI
Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483–96.. doi: 10.7150/ijbs.27173. PubMed DOI PMC
Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, et al. Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res. 2012;2012:789174. doi: 10.1155/2012/789174. PubMed DOI PMC
Argiles JM, Lopez-Soriano FJ. Insulin and cancer (Review) Int J Oncol. 2001;18:683–7. PubMed
Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5. doi: 10.1038/nature05616. PubMed DOI
Boesgaard TW, Zilinskaite J, Vanttinen M, Laakso M, Jansson PA, Hammarstedt A, et al. The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients-the EUGENE2 study. Diabetologia. 2008;51:816–20. doi: 10.1007/s00125-008-0955-6. PubMed DOI
Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. The. J Exp Med. 2017;214:209–26.. doi: 10.1084/jem.20160068. PubMed DOI PMC
Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582:2093–101. doi: 10.1016/j.febslet.2008.04.039. PubMed DOI
Gao L, Bai L, Nan Q. Activation of Rho GTPase Cdc42 promotes adhesion and invasion in colorectal cancer cells. Med Sci Monit Basic Res. 2013;19:201–7. doi: 10.12659/MSMBR.883983. PubMed DOI PMC
Gomez Del Pulgar T, Valdes-Mora F, Bandres E, Perez-Palacios R, Espina C, Cejas P, et al. Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. Int J Oncol. 2008;33:185–93. PubMed
Wang Y, Zhang H, He H, Ai K, Yu W, Xiao X, et al. LRCH1 suppresses migration of CD4(+) T cells and refers to disease activity in ulcerative colitis. Int J Med Sci. 2020;17:599–608. doi: 10.7150/ijms.39106. PubMed DOI PMC
Orange JS, Ramesh N, Remold-O’Donnell E, Sasahara Y, Koopman L, Byrne M, et al. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci USA. 2002;99:11351–6. doi: 10.1073/pnas.162376099. PubMed DOI PMC
Dai K, Chen Z, She S, Shi J, Zhu J, Huang Y. Leucine rich repeats and calponin homology domain containing 1 inhibits NK-92 cell cytotoxicity through attenuating Src signaling. Immunobiology. 2020;225:151934. doi: 10.1016/j.imbio.2020.151934. PubMed DOI
Huang QY, Lai XN, Qian XL, Lv LC, Li J, Duan J, et al. Cdc42: a novel regulator of insulin secretion and diabetes-associated diseases. International journal of molecular sciences. 2019;20:179. PubMed PMC
Wang Z, Oh E, Clapp DW, Chernoff J, Thurmond DC. Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo. J Biol Chem. 2011;286:41359–67.. doi: 10.1074/jbc.M111.291500. PubMed DOI PMC
Xia Z, Su YR, Petersen P, Qi L, Kim AE, Figueiredo JC, et al. Functional informed genome-wide interaction analysis of body mass index, diabetes and colorectal cancer risk. Cancer Med. 2020;9:3563–73.. doi: 10.1002/cam4.2971. PubMed DOI PMC
Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Exp Clin Cancer Res. 2019;38:491. doi: 10.1186/s13046-019-1495-2. PubMed DOI PMC