Environmental heterogeneity structures root-associated fungal communities in Daphne arbuscula (Thymelaeaceae), a shrub adapted to extreme rocky habitats
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 2/0050/22
Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences
VEGA2/0098/22
Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences
APVV-22-0365
Slovak Research and Development Agency
RVO 67985939
Institutional project at Institute of Botany, Czech Academy of Sciences
APP0361
Grant Programme for Slovak Academy of Sciences PhD students
PubMed
38923648
DOI
10.1111/mec.17441
Knihovny.cz E-zdroje
- Klíčová slova
- Carpathians, amplicon sequencing, arbuscular mycorrhiza, dark septate endophytes, endemism, fungal pathogens,
- MeSH
- Daphne * mikrobiologie genetika MeSH
- ekosystém * MeSH
- endofyty genetika MeSH
- fyziologická adaptace genetika MeSH
- houby klasifikace genetika MeSH
- kořeny rostlin * mikrobiologie MeSH
- mykobiom genetika MeSH
- mykorhiza * genetika klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.
Department of Botany Faculty of Science Charles University Praha Czech Republic
Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic
Zobrazit více v PubMed
Akhtar, M. S., & Siddiqui, Z. A. (2008). Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In Z. A. Siddiqui, M. S. Akhtar, & K. Futai (Eds.), Mycorrhizae: Sustainable agriculture and forestry (pp. 61–97). Springer. https://doi.org/10.1007/978‐1‐4020‐8770‐7_3
Alberton, O., Kuyper, T. W., & Gorissen, A. (2005). Taking mycocentrism seriously: Mycorrhizal fungi and plant responses to elevated CO2. New Phytologist, 167, 859–868. https://doi.org/10.1111/j.1469‐8137.2005.01458.x
Aronesty, E. (2011). ea‐utils: Command‐line tools for processing biological sequencing data. https://github.com/ExpressionAnalysis/ea‐utils
Bacigálová, K. (1994). Mycoflora of Daphne arbuscula Čelak. dying twings. Bulletin Slovenskej Botanickej spoločnosti, Bratislava, 16, 82–85.
Baldrian, P., Bell‐Dereske, L., Lepinay, C., Větrovský, T., & Kohout, P. (2022). Fungal communities in soils under global change. Studies in Mycology, 103, 1–24. https://doi.org/10.3114/sim.2022.103.01
Beccari, G., Hao, G., & Liu, H. (2022). Editorial: Fusarium pathogenesis: Infection mechanisms and disease progression in host plants. Frontiers in Plant Science, 13, 1020404. https://doi.org/10.3389/fpls.2022.1020404
Bengtsson‐Palme, J., Veldre, V., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., Bertrand, Y., De Wit, P., Sanchez, M., Ebersberger, I., Sanli, K., de Souza, F., Kristiansson, E., Abarenkov, K., Eriksson, K. M., & Nilsson, R. H. (2013). ITSx: Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for use in environmental sequencing. Methods in Ecology and Evolution, 4, 914–919. https://doi.org/10.1111/2041‐210X.12073
Birnbaum, C., Hopkins, A. J. M., Fontaine, J. B., & Enright, N. J. (2019). Soil fungal responses to experimental warming and drying in a Mediterranean shrubland. Science of the Total Environment, 683, 524–536. https://doi.org/10.1016/j.scitotenv.2019.05.222
Bonfim, J. A., Vasconcellos, R. L. F., Gumiere, T., Mescolotti, D. L. C., Oehl, F., & Cardoso, E. J. B. N. (2016). Diversity of arbuscular mycorrhizal fungi in a Brazilian Atlantic forest toposequence. Microbial Ecology, 20, 202–210. https://doi.org/10.1007/s00248‐015‐0661‐0
Bothe, H., Turnau, K., & Regvar, M. (2010). The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 20, 445–457. https://doi.org/10.1007/s00572‐010‐0332‐4
Bray, J. R., & Curtis, J. T. (1957). An ordination of upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349. https://doi.org/10.2307/1942268
Breman, E., Hurdu, B., Kliment, J., Kobiv, Y., Kučera, J., Mráz, P., Pușcaș, M., Renaud, J., Ronikier, M., Šibík, J., Schmotzer, A., Štubňová, E., Szatmari, P., Tasenkevich, L., Turis, P., & Slovák, M. (2020). Conserving the endemic flora of the Carpathian region: An international project to increase and share knowledge of the distribution, evolution and taxonomy of Carpathian endemics and to conserve endangered species. Plant Systematics and Evolution, 306, 1–15. https://doi.org/10.1007/s00606‐020‐01685‐5
Brundrett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (Eds.). (1996). Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research (ACIAR), Monograph 32. https://doi.org/10.13140/2.1.4880.5444
Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37–77. https://doi.org/10.1007/s11104‐008‐9877‐9
Bueno de Mesquita, C. P., Sartwell, S. A., Ordemann, E. V., Porazinska, D. L., Farrer, E. C., King, A. J., Spasojevic, M. J., Smith, J. G., Suding, K. N., & Schmidt, S. K. (2018). Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly‐unvegetated, high‐elevation landscape. Fungal Ecology, 36, 63–74. https://doi.org/10.1016/j.funeco.2018.07.009
Caboň, M., Galvánek, D., Detheridge, A. P., Griffith, G. W., Maráková, S., & Adamčík, S. (2021). Mulching has negative impact on fungal and plant diversity in Slovak oligotrophic grasslands. Basic and Applied Ecology, 52, 24–37. https://doi.org/10.1016/J.BAAE.2021.02.007
Cabral, A., Rego, C., Crous, P. W., & Oliveira, H. (2012). Virulence and cross‐infection potential of Ilyonectria spp. to grapevine. Phytopathologia Mediterranea, 51, 340–354. https://doi.org/10.14601/Phytopathol_Mediterr‐10480
Carvalho, F., Souza, F. A., Carrenho, R., Moreira, F. M. S., Jesus, E. C., & Fernandes, G. W. (2012). The mosaic of habitats in the high‐altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Applied Soil Ecology, 52, 9–19. https://doi.org/10.1016/j.apsoil.2011.10.001
Casazza, G., Lumini, E., Ercole, E., Dovana, F., Guerrina, M., Arnulfo, A., Minuto, L., Fusconi, A., & Mucciarelli, M. (2017). The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo‐endemic Berardia subacaulis. PLoS One, 12, e0171866. https://doi.org/10.1371/journal.pone.0171866
Chytrý, M., Tichý, L., Holt, J., & Botta‐Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13, 79–90. https://doi.org/10.1111/j.1654‐1103.2002.tb02025.x
Coleine, C., Stajich, J. E., de los Ríos, A., & Selbmann, L. (2021). Beyond the extremes: Rocks as ultimate refuge for fungi in drylands. Mycologia, 113, 108–133. https://doi.org/10.1080/00275514.2020.1816761
Collinge, D. B., Jensen, B., & Jørgensen, H. J. (2022). Fungal endophytes in plants and their relationship to plant disease. Current Opinion in Microbiology, 69, 102177. https://doi.org/10.1016/j.mib.2022.102177
Constantin, M. E., Fokkens, L., de Sain, M., Takken, F. L. W., & Rep, M. (2021). Number of candidate effector genes in accessory genomes differentiates pathogenic from endophytic Fusarium oxysporum strains. Frontiers in Plant Science, 12, 761740. https://doi.org/10.3389/fpls.2021.761740
De Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: Indices and statistical inference. Ecology, 90, 3566–3574. https://doi.org/10.1890/08‐1823.1
Dighton, J. (2007). Nutrient cycling by saprotrophic fungi in terrestrial habitats. In C. P. Kubicek & I. S. Druzhinina (Eds.), Environmental and microbial relationships. The Mycota IV (pp. 287–300). Springer‐Verlag.
Doehlemann, G., Ökmen, B., Zhu, W., & Sharon, A. (2017). Plant pathogenic fungi. Microbiology Spectrum, 5. https://doi.org/10.1128/microbiolspec.funk‐0023‐2016
Dorrance, A. E., Kleinhenz, M. D., McClure, S. A., & Tuttle, N. T. (2003). Temperature, moisture, and seed treatment effects on Rhizoctonia solani root rot of soybean. Plant Disease, 87, 533–538. https://doi.org/10.1094/PDIS.2003.87.5.533
Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996–998. https://doi.org/10.1038/nmeth.2604
Erdelská, O., & Turis, P. (1995). Biology of Daphne arbuscula Čelak. (Thymelaeaceae). Biologia, 50, 333–348.
Erdelská, O., & Turis, P. (Eds.). (1996). Lykovec muránsky (Daphne arbuscula Čelak.). SAŽP – Správa CHKO Muránska Planina.
Ferrazzano, S., & Williamson, P. S. (2013). Benefits of mycorrhizal inoculation in reintroduction of endangered plant species under drought conditions. Journal of Arid Environments, 98, 123–125. https://doi.org/10.1016/j.jaridenv.2013.08.007
Francioli, D., van Ruijven, J., Bakker, L., & Mommer, L. (2020). Drivers of total and pathogenic soil‐borne fungal communities in grassland plant species. Fungal Ecology, 48, 100987. https://doi.org/10.1016/j.funeco.2020.100987
Gai, J. P., Tian, H., Yang, F. Y., Christie, P., Li, X. L., & Klironomos, J. N. (2012). Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia (Jena), 55, 145–151. https://doi.org/10.1016/j.pedobi.2011.12.004
Gajdošová, Z., Šlenker, M., Svitok, M., Šrámková, G., Blanár, D., Cetlová, V., Kučera, J., Turisová, I., Turis, P., & Slovák, M. (2024). Unravelling some factors affecting sexual reproduction in rock‐specialist shrub: Insight from an endemic Daphne arbuscula (Thymelaeaceae). PLoS One, 19, e0300819. https://doi.org/10.1371/journal.pone.0300819
Geml, J. (2017). Altitudinal gradients in mycorrhizal symbioses – The current state of knowledge on how richness and community structure change with elevation. In L. Tedersoo (Ed.), Ecological studies: Biogeography of mycorrhizal symbioses (pp. 107–123). Springer.
Grünig, C. R., Queloz, V., Sieber, T. N., & Holdenrieder, O. (2008). Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.–Acephala applanata species complex in tree roots: Classification, population biology and ecology. Botany, 86, 1355–1369. https://doi.org/10.1139/B08‐108
Halda, J. J. (2001). The genus Daphne. SEN Dobré.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.
Harley, J. L., & Harley, E. L. (1987). A check‐list of mycorrhiza in the British flora. New Phytologist, 105, 1–102. https://doi.org/10.1111/j.1469‐8137.1987.tb00674.x
Hempel, S., Götzenberger, L., Kühn, I., Michalski, S. G., Rillig, M. C., Zobel, M., & Moora, M. (2013). Mycorrhizas in the central European flora: Relationships with plant life history traits and ecology. Ecology, 94, 1389–1399. https://doi.org/10.1890/12‐1700.1
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346–363. https://doi.org/10.1002/bimj.200810425
Huo, L., Gao, R., Hou, X., Yu, X., & Yang, X. (2021). Arbuscular mycorrhizal and dark septate endophyte colonization in Artemisia roots responds differently to environmental gradients in eastern and central China. The Science of the Total Environment, 795, 148808. https://doi.org/10.1016/j.scitotenv.2021.148808
Ihrmark, K., Bödeker, I. T., Cruz‐Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Strid, Y., Stenlid, J., Brandström‐Durling, M., Clemmensen, K. E., & Lindahl, B. D. (2012). New primers to amplify the fungal ITS2 region–evaluation by 454‐sequencing of artificial and natural communities. FEMS Microbiology Ecology, 82, 666–677. https://doi.org/10.1111/j.1574‐6941.2012.01437.x
Jørgensen, H. J. L., Collinge, D. B., Rojas, E. C., Latz, M. A. C., Manzotti, A., Ntana, F., & Jensen, B. (2020). Plant endophytes. In Encyclopedia of life sciences. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0028893
Kivlin, S. N., Emery, S. M., & Rudgers, J. A. (2013). Fungal symbionts alter plant responses to global change. American Journal of Botany, 100, 1445–1457. https://doi.org/10.3732/ajb.1200558
Kochjarová, J., Škodová, I., & Blanár, D. (2015). Thermophilous and mountain non‐forest vegetation pattern on the crossing of Carpathian and Pannonian region: An example from Muránska planina Mts (Central Slovakia). Tuexenia, 35, 195–220. https://doi.org/10.14471/2015.35.008
Kochjarová, J., Turis, P., & Feráková, V. (1999). Daphne arbuscula Čelak. In J. Čeřovský, V. Feráková, J. Holub, Š. Maglocký, F. Procházka, A. Zezula, & F. Gregor (Eds.), Červená kniha ohrozených a vzácnych druhov rastlín a živočíchov SR a ČR 5 – Vyššie rastliny (p. 125). Príroda.
Kogel, K. H., Franken, P., & Hückelhoven, R. (2006). Endophyte or parasite–what decides? Current Opinion in Plant Biology, 9, 358–363. https://doi.org/10.1016/j.pbi.2006.05.001
Kõljalg, U., Nilsson, H. R., Schigel, D., Tedersoo, L., Larsson, K.‐H., May, T. W., Taylor, A. F. S., Jeppesen, T. S., Frøslev, T. G., Lindahl, B. D., Põldmaa, K., Saar, I., Suija, A., Savchenko, A., Yatsiuk, I., Adojaan, K., Ivanov, F., Piirmann, T., Pöhönen, R., … Abarenkov, K. (2020). The taxon hypothesis paradigm—On the unambiguous detection and communication of taxa. Microorganisms, 8, 1910. https://doi.org/10.3390/microorganisms8121910
Koske, R. E., & Gemma, J. N. (1989). A modified procedure for staining roots to detect Va‐mycorrhizas. Mycological Research, 92, 486–505. https://doi.org/10.1016/S0953‐7562(89)80195‐9
Kotilínek, M., Hiiesalu, I., Košnar, J., Šmilauerová, M., Šmilauer, P., Altman, J., Dvorský, M., Kopecký, M., & Doležal, J. (2017). Fungal root symbionts of high‐altitude vascular plants in the Himalayas. Scientific Reports, 7, 6562. https://doi.org/10.1038/s41598‐017‐06938‐x
Krah, F. S., & March‐Salas, M. (2022). eDNA metabarcoding reveals high soil fungal diversity and variation in community composition among Spanish cliffs. Ecology and Evolution, 12, e9594. https://doi.org/10.1002/ece3.9594
Kukla, J., Kontrišová, O., & Kontriš, J. (1996). Geobiocenotic conditions for subsistence of the Daphne arbuscula Čelak species. Ecology (Bratislava), 15, 283–293.
Larson, D. W., Matthes, U., & Kelly, P. E. (Eds.). (2000). Cliff ecology: Pattern and process in cliff ecosystems. Cambridge University Press.
Lastovetsky, O. A., Caruso, T., Brennan, F. P., Wall, D. P., McMahon, S., & Doyle, E. (2022). Evidence of a selective and bi‐directional relationship between arbuscular mycorrhizal fungal and bacterial communities co‐inhabiting plant roots. Environmental Microbiology, 24, 5378–5391. https://doi.org/10.1111/1462‐2920.16227
Lee, J., Lee, S., & Young, J. P. W. (2008). Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 65, 339–349. https://doi.org/10.1111/j.1574‐6941.2008.00531.x
Lombard, L., van der Merwe, N. A., Groenewald, J. Z., & Crous, P. W. (2014). Lineages in Nectriaceae: re‐evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53, 515–532. https://doi.org/10.14601/Phytopathol_Mediterr‐14976
Looby, C. I., & Treseder, K. K. (2018). Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biology and Biochemistry, 117, 87–96. https://doi.org/10.1016/j.soilbio.2017.11.014
Lugo, M. A., Reinhart, K. O., Menoyo, E., Crespo, E. M., & Urcelay, C. (2015). Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza, 25, 85–95. https://doi.org/10.1007/s00572‐014‐0592‐5
Matthes, U., & Larson, D. W. (2006). Microsite and climatic controls of tree population dynamics: An 18‐year study on cliffs. Journal of Ecology, 94, 402–414. https://doi.org/10.1111/j.1365‐2745.2005.01083.x
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytologist, 115, 495–501. https://doi.org/10.1111/j.1469‐8137.1990.tb00476.x
Merges, D., Bálint, M., Schmitt, I., Böhning‐Gaese, K., & Neuschulz, E. L. (2018). Spatial patterns of pathogenic and mutualistic fungi across the elevational range of a host plant. Journal of Ecology, 106, 1545–1557. https://doi.org/10.1111/1365‐2745.12942
Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10, 311–324. https://doi.org/10.1111/j.1364‐3703.2009.00538.x
Miller, I. F., Jiranek, J., Brownell, M., Coffey, S., Gray, B., Stahl, M., & Metcalf, C. J. E. (2022). Predicting the effects of climate change on the cross‐scale epidemiological dynamics of a fungal plant pathogen. Scientific Reports, 12, 14823. https://doi.org/10.1038/s41598‐022‐18851‐z
Morón‐Ríos, A., Gómez‐Cornelio, S., Ortega‐Morales, B. O., de la Rosa‐García, S., Partida‐ Martínez, L. P., Quintana, P., Alayón‐Gamboa, J. A., Cappello‐García, S., & González‐Gómez, S. (2017). Interactions between abundant fungal species influence the fungal community assemblage on limestone. PLoS One, 12, e0188443. https://doi.org/10.1371/journal.pone.0188443
Morton, J. B., & Msiska, Z. (2010). Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza, 20, 483–496. https://doi.org/10.1007/s00572‐010‐0303‐9
Mráz, P., Barabas, D., Lengyelová, L., Turis, P., Schmotzer, A., Janišová, M., & Ronikier, M. (2016). Vascular plant endemism in the Western Carpathians: Spatial patterns, environmental correlates and taxon traits. Biological Journal of the Linnean Society, 119, 630–648. https://doi.org/10.1111/bij.12792
Narisawa, K., Usuki, F., & Hashiba, T. (2004). Control of Verticillium yellows in Chinese cabbage by the dark septate endophytic fungus LtVB3. Phytopathology, 94, 412–418. https://doi.org/10.1094/PHYTO.2004.94.5.412
Netherway, T., Bengtsson, J., Buegger, F., Fritscher, J., Oja, J., Pritsch, K., Hildebrand, F., Krab, E. J., & Bahram, M. (2024). Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe. Nature Communications, 15, 159. https://doi.org/10.1038/s41467‐023‐44172‐4
Newsham, K. K. (2011). A meta‐analysis of plant responses to dark septate root endophytes. New Phytologist, 190, 783–793. https://doi.org/10.1111/j.1469‐8137.2010.03611.x
Nicolitch, O., Colin, Y., Turpault, M. P., Fauchery, L., & Uroz, S. (2017). Tree roots select specific bacterial communities in the subsurface critical zone. Soil Biology and Biochemistry, 115, 109–123. https://doi.org/10.1016/j.soilbio.2017.07.003
Nilsson, R. H., Larsson, K.‐H., Taylor, A. F. S., Bengtsson‐Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47, D259–D264. https://doi.org/10.1093/nar/gky1022
Noshad, D., Riseman, A., & Punja, Z. K. (2006). First report of Thielaviopsis basicola on Daphne cneorum. Canadian Journal of Plant Pathology, 28, 310–312. https://doi.org/10.1080/07060660609507300
Öpik, M., Vanatoa, A., Vanatoa, E., Moora, M., Davison, J., Kalwij, J. M., Reier, U., & Zobel, M. (2010). The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist, 188, 223–241. https://doi.org/10.1111/j.1469‐8137.2010.03334.x
Pandey, A. (2019). Are dark septate endophytes bioindicators of climate in mountain ecosystems? Rhizosphere, 9, 110–111. https://doi.org/10.1016/j.rhisph.2019.01.001
Pereira, E., Vázquez de Aldana, B. R., San Emeterio, L., & Zabalgogeazcoa, I. (2019). A survey of culturable fungal endophytes from Festuca rubra subsp. pruinosa, a grass from marine cliffs, reveals a core microbiome. Frontiers in Microbiology, 9, 3321. https://doi.org/10.3389/fmicb.2018.03321
Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S. T., Baldrian, P., Frøslev, T. G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D., Baral, H. O., Järv, H., Madrid, H., Nordén, J., … Tedersoo, L. (2020). FungalTraits: A user‐friendly traits database of fungi and fungus‐like stramenopiles. Fungal Diversity, 105, 1–16. https://doi.org/10.1007/s13225‐020‐00466‐2
Porembski, S., & Barthlott, W. (Eds.). (2000). Inselbergs: Biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer‐Verlag. https://doi.org/10.1007/978‐3‐642‐59773‐2
Porras‐Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Novel root fungal consortium associated with a dominant desert grass. Applied and Environmental Microbiology, 74, 2805–2813. https://doi.org/10.1128/AEM.02769‐07
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Ramegowda, V., & Senthil‐Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47–54. https://doi.org/10.1016/j.jplph.2014.11.008
Ranelli, L. B., Hendricks, W. Q., Lynn, J. S., Kivlin, S. N., & Rudgers, J. A. (2015). Biotic and abiotic predictors of fungal colonization in grasses of the Colorado Rockies. Diversity and Distributions, 21, 962–976. https://doi.org/10.1111/ddi.12310
Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B., & Walker, C. (2013). An evidence‐based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23, 515–531. https://doi.org/10.1007/s00572‐013‐0486‐y
Řezáčová, V., Gryndler, M., Bukovská, P., Šmilauer, P., & Jansa, J. (2016). Molecular community analysis of arbuscular mycorrhizal fungi—Contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia, 59, 179–187. https://doi.org/10.1016/J.PEDOBI.2016.04.002
Ritchie, J. T. (1998). Soil water balance and plant water stress. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production. Systems approaches for sustainable agricultural development (Vol. 7, pp. 41–54). Springer. https://doi.org/10.1007/978‐94‐017‐3624‐4_3
Rodriguez, R. J., White, J. F., Jr., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles. New Phytologist, 182, 314–330. https://doi.org/10.1111/j.1469‐8137.2009.02773.x
Sajeena, A., Nair, D. S., & Sreepavan, K. (2020). Non‐pathogenic Fusarium oxysporum as a biocontrol agent. Indian Phytopathology, 73, 177–183. https://doi.org/10.1007/s42360‐020‐00226‐x
Sanguin, H., Mathaux, C., Guibal, F., Prin, Y., Mandin, J.‐P., Gauquelin, T., & Duponnois, R. (2016). Ecology of vertical life in harsh environments: The case of mycorrhizal symbiosis with secular cliff climbing trees (Juniperus phoenicea L.). Journal of Arid Environments, 134, 132–135. https://doi.org/10.1016/j.jaridenv.2016.07.008
Santonja, M., Fernandez, C., Gauquelin, T., & Baldy, V. (2015). Climate change effects on litter decomposition: Intensive drought leads to a strong decrease of litter mixture interactions. Plant and Soil, 393, 69–82. https://doi.org/10.1007/s11104‐015‐2471‐z
Santos, M., Cesanelli, I., Diánez, F., Sánchez‐Montesinos, B., & Moreno‐Gavíra, A. (2021). Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses. Journal of Fungi, 7, 939. https://doi.org/10.3390/jof7110939
Scervino, J. M., Gottlieb, A., Silvani, V. A., Pérgola, M., Fernández, L., & Godeas, A. M. (2009). Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biology and Biochemistry, 41, 1753–1756. https://doi.org/10.1016/j.soilbio.2009.04.021
Simon, L., Lalonde, M., & Bruns, T. D. (1992). Specific amplification of 18S fungal ribosomal genes from vesicular‐arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 58, 291–295. https://doi.org/10.1128/aem.58.1.291‐295.1992
Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. Academic press.
Stroheker, S., Dubach, V., Vögtli, I., & Sieber, T. N. (2021). Investigating host preference of root endophytes of three european tree species, with a focus on members of the Phialocephala fortinii—Acephala applanata species complex (PAC). Journal of Fungi, 7, 317. https://doi.org/10.3390/jof7040317
Strullu‐Derrien, C., Selosse, M.‐A., Kenrick, P., & Martin, F. M. (2018). The origin and evolution of mycorrhizal symbioses: From palaeomycology to phylogenomics. New Phytologist, 220, 1012–1030. https://doi.org/10.1111/nph.15076
Surono, S., & Narisawa, K. (2018). The inhibitory role of dark septate endophytic fungus Phialocephala fortinii against Fusarium disease on the Asparagus officinalis growth in organic source conditions. Biological Control, 121, 159–167. https://doi.org/10.1016/j.biocontrol.2018.02.017
Tellenbach, C., Sumarah, M. W., Grunig, C. R., & Miller, J. D. (2013). Inhibition of Phytophthora species by secondary metabolites produced by the dark septate endophyte Phialocephala europaea. Fungal Ecology, 6, 12–18. https://doi.org/10.1016/j.funeco.2012.10.003
Thompson, S., Alvarez‐Loayza, P., Terborgh, J. W., & Katul, G. (2010). The effects of plant pathogens on tree recruitment in the Western Amazon under a projected future climate: A dynamical systems analysis. Journal of Ecology, 98, 1434–1446. https://doi.org/10.1111/j.1365‐2745.2010.01726.x
Tian, J., Wu, B., Chen, H., Jiang, N., Kang, X., & Liu, X. (2017). Patterns and drivers of fungal diversity along an altitudinal gradient on Mount Gongga, China. Journal of Soils and Sediments, 17, 2856–2865. https://doi.org/10.1007/s11368‐017‐1701‐9
Tipton, A. G., Nelsen, D., Koziol, L., Duell, E. B., House, G., Wilson, G. W. T., Schultz, P. A., & Bever, J. D. (2022). Arbuscular mycorrhizal fungi taxa show variable patterns of micro‐scale dispersal in prairie restorations. Frontiers in Microbiology, 13, 827293. https://doi.org/10.3389/fmicb.2022.827293
Treseder, K. K., Marusenko, Y., Romero‐Olivares, A. L., & Maltz, M. R. (2016). Experimental warming alters potential function of the fungal community in boreal forest. Global Change Biology, 22, 3395–3404. https://doi.org/10.1111/gcb.13238
Uhlířová, J., & Bernátová, D. (2003). Príspevok k flóre a vegetácii skalných stanovíšť Muránskej planiny. Zborník Slovenského Národného Múzea, Prírodné Vedy, Bratislava, 49, 55–67.
Úrbez‐Torres, J. R., Peduto, F., & Gubler, W. D. (2012). First report of Ilyonectria macrodidyma causing root rot of olive trees (Olea europaea) in California. Plant Disease, 96, 1378. https://doi.org/10.1094/PDIS‐04‐12‐0330‐PDN
Valachovič, M., & Jarolímek, I. (1994). Rastlinné spoločenstvá s výskytom Daphne arbuscula Čelak. na Muránskej planine. Bulletin Slovenskej Botanickej Spoločnosti, 16, 75–82.
Valachovič, M., & Mucina, L. (2004). Variabilita kostravových porastov na vápencových skalách Muránskej planiny. Reussia, 1, 75–86.
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205, 1406–1423. https://doi.org/10.1111/nph.13288
Větrovský, T., Baldrian, P., Morais, D., & Berger, B. (2018). SEED 2: A user‐friendly platform for amplicon high‐throughput sequencing data analyses. Bioinformatics, 34, 2292–2294. https://doi.org/10.1093/bioinformatics/bty071
Větrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B. D., Brabcová, V., Choi, J., Meszárošová, L., Human, Z. R., Lepinay, C., Lladó, S., López‐Mondéjar, R., Martinović, T., Mašínová, T., Morais, D., Navrátilová, D., Odriozola, I., Štursová, M., … Baldrian, P. (2019). A meta‐analysis of global fungal distribution reveals climate‐driven patterns. Nature Communications, 10, 5142. https://doi.org/10.1038/s41467‐019‐13164‐8
Větrovský, T., Kolaříková, Z., Lepinay, C., Awokunle Hollá, S., Davison, J., Fleyberková, A., Gromyko, A., Jelínková, B., Kolařík, M., Krüger, M., Lejsková, R., Michalčíková, L., Michalová, T., Moora, M., Moravcová, A., Moulíková, Š., Odriozola, I., Öpik, M., Pappová, M., … Kohout, P. (2023). GlobalAMFungi: A global database of arbuscular mycorrhizal fungal occurrences from high‐throughput sequencing metabarcoding studies. New Phytologist, 240, 2151–2163. https://doi.org/10.1111/nph.19283
Větrovský, T., Morais, D., Kohout, P., Lepinay, C., Algora, C., Awokunle Hollá, S., Bahnmann, B. D., Bílohnědá, K., Brabcová, V., D'Alò, F., Human, Z. R., Jomura, M., Kolařík, M., Kvasničková, J., Lladó, S., López‐Mondéjar, R., Martinović, T., Mašínová, T., Meszárošová, L., … Baldrian, P. (2020). Global Fungi, a global database of fungal occurrences from high‐throughput‐sequencing metabarcoding studies. Scientific Data, 7, 1–14. https://doi.org/10.1038/s41597‐020‐0567‐7
Vitale, A., Aiello, D., Guarnaccia, V., Perrone, G., Stea, G., & Polizzi, G. (2012). First report of root rot caused by Ilyonectria (=Neonectria) macrodidyma on avocado (Persea americana) in Italy. Journal of Phytopathology, 160, 156–159. https://doi.org/10.1111/j.1439‐0434.2011.01869.x
Wang, B., & Qiu, Y. L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299–363. https://doi.org/10.1007/s00572‐005‐0033‐6
Wang, X., Wang, T., Xu, J., Shen, Z., Yang, Y., Chen, A., Wang, S., Liang, E., & Piao, S. (2022). Enhanced habitat loss of the Himalayan endemic flora driven by warming‐forced upslope tree expansion. Nature Ecology & Evolution, 6, 890–899. https://doi.org/10.1038/s41559‐022‐01774‐3
White, R. (2006). Daphnes a practical guide for gardeners. USA Timber Press, Inc. The Haseltine Building.
White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press Inc. https://doi.org/10.1016/B978‐0‐12‐372180‐8.50042‐1
Wu, L., Chen, J., Wu, H., Wang, J., Wu, Y., Lin, S., Khan, M. U., Zhang, Z., & Lin, W. (2016). Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Scientific Reports, 6, 26601. https://doi.org/10.1038/srep26601
Xiao, D., Che, R., Liu, X., Tan, Y., Yang, R., Zhang, W., He, X., Xu, Z., & Wang, K. (2019). Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biology and Fertility of Soils, 55, 457–469. https://doi.org/10.1007/s00374‐019‐01362‐x
Xiao, D., Gai, S., He, X., Zhang, W., Hu, P., Soromotin, A. V., Alharbi, H. A., Kuzyakov, Y., & Wang, K. (2023). Habitat heterogeneity drives arbuscular mycorrhizal fungi and shrub communities in karst ecosystems. Catena, 233, 107513. https://doi.org/10.1016/j.catena.2023.107513
Yakti, W., Kovács, G. M., & Franken, P. (2019). Differential interaction of the dark septate endophyte Cadophora sp. and fungal pathogens in vitro and in planta. FEMS Microbiology Ecology, 95, fiz164. https://doi.org/10.1093/femsec/fiz164
Yan, H., & Nelson, B. (2020). Effect of temperature on Fusarium solani and F. tricinctum growth and disease development in soybean. Canadian Journal of Plant Pathology, 42, 527–537. https://doi.org/10.1080/07060661.2020.1745893
Zabinski, C. A., & Bunn, R. A. (2014). Function of mycorrhizae in extreme environments. In Z. M. Solaiman, L. K. Abbott, & A. Varma (Eds.), Mycorrhizal fungi: Use in sustainable agriculture and land restoration (pp. 201–214). Springer. https://doi.org/10.1007/978‐3‐662‐45370‐4
Zhang, Q., Acuña, J. J., Inostroza, N. G., Mora, M. L., Radic, S., Sadowsky, M. J., & Jorquera, M. A. (2019). Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Scientific Reports, 9, 4950. https://doi.org/10.1038/s41598‐019‐41160‐x
Zubek, S., Turnau, K., & Błaszkowski, J. (2008). Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts. Acta Societatis Botanicorum Poloniae, 77, 149–156. https://doi.org/10.5586/asbp.2008.019
Zubek, S., Turnau, K., Tsimilli‐Michael, M., & Strasser, R. J. (2009). Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza, 19, 113–123. https://doi.org/10.1007/s00572‐008‐0209‐y