Amoebicidal Effect of COVID Box Molecules against Acanthamoeba: A Study of Cell Death
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CB21/13/00100
CIBERINFEC
CC20230222, CABILDO.23
Cabildo Insular de Tenerife 2023-2028
PubMed
38931475
PubMed Central
PMC11206913
DOI
10.3390/ph17060808
PII: ph17060808
Knihovny.cz E-zdroje
- Klíčová slova
- Acanthamoeba, COVID box, action mode, amoebicidal activity, programmed cell death,
- Publikační typ
- časopisecké články MeSH
Acanthamoeba spp. can cause a sight threatening disease. At present, the current treatments used to treat Acanthamoeba spp. Infections, such as biguanide-based antimicrobials, remain inefficacious, with the appearance of resistant forms and high cytotoxicity to host cells. In this study, an initial screening was conducted against Acanthamoeba castellanii Neff and murine macrophages J774A.1 using alamarBlue™. Among the 160 compounds included in the cited box, 90% exhibited an inhibition of the parasite above 80%, while only 18.75% of the compounds inhibited the parasite with a lethality towards murine macrophage lower than 20%. Based on the amoebicidal activity, the cytotoxicity assay, and availability, Terconazole was chosen for the elucidation of the action mode in two clinical strains, Acanthamoeba culbertsoni and Acanthamoeba castellanii L10. A fluorescence image-based system and proteomic techniques were used to investigate the effect of the present azole on the cytoskeleton network and various programmed cell death features, including chromatin condensation and mitochondria dysfunction. Taking all the results together, we can suggest that Terconazole can induce programmed cell death (PCD) via the inhibition of sterol biosynthesis inhibition.
Consorcio Centro de Investigación on Biomédica En Red Instituto de Salud Carlos 3 28220 Madrid Spain
Department of Parasitology Faculty of Science Charles University BIOCEV 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Reyes-Batlle M., Córdoba-Lanús E., Domínguez-de-Barros A., Sifaoui I., Rodríguez-Expósito R.L., Mantesa-Rodríguez S., Piñero J.E., Lorenzo-Morales J. Reliable and specific detection of Acanthamoeba spp. in dishcloths using quantitative real-time PCR assay. Food Microbiol. 2024;122:104562. doi: 10.1016/j.fm.2024.104562. PubMed DOI
Siddiqui R., Khan N.A. Biology and pathogenesis of Acanthamoeba. Parasites Vectors. 2012;5:6. doi: 10.1186/1756-3305-5-6. PubMed DOI PMC
Wang Y., Jiang L., Zhao Y., Ju X., Wang L., Jin L., Fine R.D., Li M. Biological characteristics and pathogenicity of Acanthamoeba. Front. Microbiol. 2023;14:1147077. doi: 10.3389/fmicb.2023.1147077. PubMed DOI PMC
Fanselow N., Sirajuddin N., Yin X., Huang A.J.W., Stuart P.M. Acanthamoeba Keratitis, Pathology, Diagnosis and Treatment. Pathogens. 2021;10:323. doi: 10.3390/pathogens10030323. PubMed DOI PMC
Sifaoui I., Reyes-Batlle M., López-Arencibia A., Chiboub O., Bethencourt-Estrella C.J., San Nicolás-Hernández D., Rodríguez Expósito R.L., Rizo-Liendo A., Piñero J.E., Lorenzo-Morales J. Screening of the pathogen box for the identification of anti-Acanthamoeba agents. Exp. Parasitol. 2019;201:90–92. doi: 10.1016/j.exppara.2019.04.013. PubMed DOI
Botella L.M. Drug repurposing as a current strategy in medicine discovery. Semer. Med. Fam. 2022;48:101790. doi: 10.1016/j.semerg.2022.03.003. PubMed DOI
Barnes C.B.G., Dans M.G., Jonsdottir T.K., Crabb B.S., Gilson P.R. PfATP4 inhibitors in the Medicines for Malaria Venture Malaria Box and Pathogen Box block the schizont-to-ring transition by inhibiting egress rather than invasion. Front. Cell. Infect. Microbiol. 2022;12:1060202. doi: 10.3389/fcimb.2022.1060202. PubMed DOI PMC
Samby K., Willis P.A., Burrows J.N., Laleu B., Webborn P.J.H. Actives from MMV Open Access Boxes? A suggested way forward. PLoS Pathog. 2021;17:e1009384. doi: 10.1371/journal.ppat.1009384. PubMed DOI PMC
Lopez-Arencibia A., Sifaoui I., Reyes-Batlle M., Bethencourt-Estrella C.J., San Nicolas-Hernandez D., Lorenzo-Morales J., Pinero J.E. Discovery of New Chemical Tools against Leishmania amazonensis via the MMV Pathogen Box. Pharmaceuticals. 2021;14:1219. doi: 10.3390/ph14121219. PubMed DOI PMC
Duffy S., Sykes M.L., Jones A.J., Shelper T.B., Simpson M., Lang R., Poulsen S., Sleebs B.E., Avery V.M. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob. Agents Chemother. 2017;61:e00379-17. doi: 10.1128/AAC.00379-17. PubMed DOI PMC
Spalenka J., Escotte-Binet S., Bakiri A., Hubert J., Renault J., Velard F., Duchateau S., Aubert D., Huguenin A., Villena I. Discovery of New Inhibitors of Toxoplasma gondii via the Pathogen Box. Antimicrob. Agents Chemother. 2018;62:e01640-17. doi: 10.1128/AAC.01640-17. PubMed DOI PMC
Dos Santos B.R., Ramos A.B.d.S.B., de Menezes R.P.B., Scotti M.T., Colombo F.A., Marques M.J., Reimao J.Q. Repurposing the Medicines for Malaria Venture’s COVID Box to discover potent inhibitors of Toxoplasma gondii, and in vivo efficacy evaluation of almitrine bismesylate (MMV1804175) in chronically infected mice. PLoS ONE. 2023;18:e0288335. doi: 10.1371/journal.pone.0288335. PubMed DOI PMC
Chao-Pellicer J., Arberas-Jiménez I., Sifaoui I., Piñero J.E., Lorenzo-Morales J. Exploring therapeutic approaches against Naegleria fowleri infections through the COVID box. Int. J. Parasitol. Drugs Drug Resist. 2024;25:100545. doi: 10.1016/j.ijpddr.2024.100545. PubMed DOI PMC
Sivandzade F., Bhalerao A., Cucullo L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio Protoc. 2019;9:e3128. doi: 10.21769/BioProtoc.3128. PubMed DOI PMC
Hua Y., Dai X., Xu Y., Xing G., Liu H., Lu T., Chen Y., Zhang Y. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur. J. Med. Chem. 2022;234:114239. doi: 10.1016/j.ejmech.2022.114239. PubMed DOI PMC
Pareek S., Huang Y., Nath A., Huang R.S. Chapter 6—The success story of drug repurposing in breast cancer. In: To K.K.W., Cho W.C.S., editors. Drug Repurposing in Cancer Therapy. Academic Press; Cambridge, MA, USA: 2020. pp. 173–190.
Teixeira M.M., Carvalho D.T., Sousa E., Pinto E. New Antifungal Agents with Azole Moieties. Pharmaceuticals. 2022;15:1427. doi: 10.3390/ph15111427. PubMed DOI PMC
Henriquez F.L., Ingram P.R., Muench S.P., Rice D.W., Roberts C.W. Molecular Basis for Resistance of Acanthamoeba Tubulins to All Major Classes of Antitubulin Compounds. Antimicrob. Agents Chemother. 2007;52:1133. doi: 10.1128/aac.00355-07. PubMed DOI PMC
Shing B., Balen M., Mckerrow J.H., Debnath A. Acanthamoeba Keratitis: An update on amebicidal and cysticidal drug screening methodologies and potential treatment with azole drugs. Expert Rev. Anti Infect. Ther. 2022;19:1427. doi: 10.1080/14787210.2021.1924673. PubMed DOI PMC
Bahy R., Helal D. Evaluation of the Antimycotic activity of Terconazole proniosomal Gel. Egypt. J. Med. Microbiol. 2022;31:121–126. doi: 10.21608/ejmm.2022.229668. DOI
Lee J.S., Oh Y., Park J.H., Kyung S.Y., Kim H.S., Yoon S. Terconazole, an Azole Antifungal Drug, Increases Cytotoxicity in Antimitotic Drug-Treated Resistant Cancer Cells with Substrate-Specific P-gp Inhibitory Activity. Int. J. Mol. Sci. 2022;23:13809. doi: 10.3390/ijms232213809. PubMed DOI PMC
Reigada C., Saye M., Valera-Vera E., Miranda M.R., Pereira C.A. Repurposing of terconazole as an anti Trypanosoma cruzi agent. Heliyon. 2019;5:e01947. doi: 10.1016/j.heliyon.2019.e01947. PubMed DOI PMC
Yang S., Yan D., Li M., Li D., Zhang S., Fan G., Peng L., Pan S. Ergosterol depletion under bifonazole treatment induces cell membrane damage and triggers a ROS-mediated mitochondrial apoptosis in Penicillium expansum. Fungal Biol. 2022;126:1–10. doi: 10.1016/j.funbio.2021.09.002. PubMed DOI
Pratiwi R.A., Yahya N.S.W., Chi Y. Bio function of Cytochrome P450 on fungus: A review. IOP Conf. Ser. Earth Environ. Sci. 2022;959:12023. doi: 10.1088/1755-1315/959/1/012023. DOI
Yoshida Y. Cytochrome P450 of fungi: Primary target for azole antifungal agents. Curr. Top. Med. Mycol. 1988;2:388–418. doi: 10.1007/978-1-4612-3730-3_11. PubMed DOI
Huang J., Ko P., Huang C., Wen P., Chen C., Shih M., Lin W., Huang F. Cytochrome P450 monooxygenase of Acanthamoeba castellanii participates in resistance to polyhexamethylene biguanide treatment. Parasite. 2021;28:77. doi: 10.1051/parasite/2021074. PubMed DOI PMC
She X., Zhang L., Peng J., Zhang J., Li H., Zhang P., Calderone R., Liu W., Li D. Mitochondrial Complex I Core Protein Regulates cAMP Signaling via Phosphodiesterase Pde2 and NAD Homeostasis in Candida albicans. Front. Microbiol. 2020;11:559975. doi: 10.3389/fmicb.2020.559975. PubMed DOI PMC
Taylor J., Yeomans A.M., Packham G. Targeted inhibition of mRNA translation initiation factors as a novel therapeutic strategy for mature B-cell neoplasms. Explor. Target. Anti-Tumor Ther. 2020;1:3–25. doi: 10.37349/etat.2020.00002. PubMed DOI PMC
Mo D., Liu C., Chen Y., Cheng X., Shen J., Zhao L., Zhang J. The mitochondrial ribosomal protein mRpL4 regulates Notch signaling. EMBO Rep. 2023;24:e55764. doi: 10.15252/embr.202255764. PubMed DOI PMC
Lindqvist L., Oberer M., Reibarkh M., Cencic R., Bordeleau M., Vogt E., Marintchev A., Tanaka J., Fagotto F., Altmann M., et al. Selective pharmacological targeting of a DEAD box RNA helicase. PLoS ONE. 2008;3:e1583. doi: 10.1371/journal.pone.0001583. PubMed DOI PMC
Zhang L., Li X. DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells. 2021;10:1540. doi: 10.3390/cells10061540. PubMed DOI PMC
Yildizhan H., Barkan N.P., Karahisar Turan S., Demiralp Ö., Özel Demiralp F.D., Uslu B., Ōzkan S.A. Chapter 1—Treatment strategies in cancer from past to present. In: Grumezescu A.M., editor. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. William Andrew Publishing; Norwich, NY, USA: 2018. pp. 1–37.
Garcia-Diaz M., Bebenek K. Multiple functions of DNA polymerases. CRC Crit. Rev. Plant Sci. 2007;26:105–122. doi: 10.1080/07352680701252817. PubMed DOI PMC
Berdis A.J. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer. Front. Mol. Biosci. 2017;4:78. doi: 10.3389/fmolb.2017.00078. PubMed DOI PMC
Martín-Navarro C.M., Lorenzo-Morales J., Cabrera-Serra M.G., Rancel F., Coronado-Álvarez N.M., Piñero J.E., Valladares B. The potential pathogenicity of chlorhexidine-sensitive Acanthamoeba strains isolated from contact lens cases from asymptomatic individuals in Tenerife, Canary Islands, Spain. J. Med. Microbiol. 2008;57:1399. doi: 10.1099/jmm.0.2008/003459-0. PubMed DOI
Sifaoui I., Reyes-Batlle M., López-Arencibia A., Wagner C., Chiboub O., De Agustino Rodríguez J., Rocha-Cabrera P., Valladares B., Piñero J.E., Lorenzo-Morales J. Evaluation of the anti-Acanthamoeba activity of two commercial eye drops commonly used to lower eye pressure. Exp. Parasitol. 2017;183:117–123. doi: 10.1016/j.exppara.2017.07.012. PubMed DOI
Sifaoui I., Reyes-Batlle M., López-Arencibia A., Chiboub O., Rodríguez-Martín J., Rocha-Cabrera P., Valladares B., Piñero J.E., Lorenzo-Morales J. Toxic effects of selected proprietary dry eye drops on Acanthamoeba. Sci. Rep. 2018;8:8520. doi: 10.1038/s41598-018-26914-3. PubMed DOI PMC
Rodríguez-Expósito R.L., Sifaoui I., Reyes-Batlle M., Fuchs F., Scheid P.L., Piñero J.E., Sutak R., Lorenzo-Morales J. Induction of Programmed Cell Death in Acanthamoeba culbertsoni by the Repurposed Compound Nitroxoline. Antioxidants. 2023;12:2081. doi: 10.3390/antiox12122081. PubMed DOI PMC
Arbon D., Zeniskova K., Subrtova K., Mach J., Stursa J., Machado M., Zahedifard F., Lestinova T., Hierro-Yap C., Neuzil J., et al. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob. Agents Chemother. 2022;66:e0072722. doi: 10.1128/aac.00727-22. PubMed DOI PMC
Hughes C.S., Moggridge S., Müller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019;14:68–85. doi: 10.1038/s41596-018-0082-x. PubMed DOI
Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI