Analytical electron microscopy analysis of insulating and metallic phases in nanostructured vanadium dioxide
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38933858
PubMed Central
PMC11197434
DOI
10.1039/d4na00338a
PII: d4na00338a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Vanadium dioxide (VO2) is a strongly correlated material that exhibits the insulator-to-metal transition (IMT) near room temperature, which makes it a promising candidate for applications in nanophotonics or optoelectronics. However, creating VO2 nanostructures with the desired functionality can be challenging due to microscopic inhomogeneities that can significantly impact the local optical and electronic properties. Thin lamellas, produced by focused ion beam milling from a homogeneous layer, provide a useful prototype for studying VO2 at the truly microscopic level using a scanning transmission electron microscope (STEM). High-resolution imaging is used to identify structural inhomogeneities while electron energy-loss spectroscopy (EELS) supported by statistical analysis helps to detect V x O y stoichiometries with a reduced oxidation number of vanadium at the areas of thickness below 70 nm. On the other hand, the thicker areas are dominated by vanadium dioxide, where the signatures of the IMT are detected in both core-loss and low-loss EELS experiments with in situ heating. The experimental results are interpreted with ab initio and semi-classical calculations. This work shows that structural inhomogeneities such as pores and cracks present no harm to the desired optical properties of VO2 samples.
Zobrazit více v PubMed
Morosan E. Natelson D. Nevidomskyy A. H. Si Q. Adv. Mater. 2012;24:4896–4923. doi: 10.1002/adma.201202018. PubMed DOI
Budai J. D. Hong J. Manley M. E. Specht E. D. Li C. W. Tischler J. Z. Abernathy D. L. Said A. H. Leu B. M. Boatner L. A. McQueeney R. J. Delaire O. Nature. 2014;515:535–539. doi: 10.1038/nature13865. PubMed DOI
Nag J. Haglund R. F. Payzant E. A. More K. L. J. Appl. Phys. 2012;112:103532. doi: 10.1063/1.4764040. DOI
Wu B. Zimmers A. Aubin H. Ghosh R. Liu Y. Lopez R. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:241410. doi: 10.1103/PhysRevB.84.241410. DOI
Aetukuri N. B. Gray A. X. Drouard M. Cossale M. Gao L. Reid A. H. Kukreja R. Ohldag H. Jenkins C. A. Arenholz E. Roche K. P. Dürr H. A. Samant M. G. Parkin S. S. P. Nat. Phys. 2013;9:661–666.
Lei D. Y. Appavoo K. Ligmajer F. Sonnefraud Y. Haglund R. F. Maier S. A. ACS Photonics. 2015;2:1306–1313.
Wegkamp D. Stähler J. Prog. Surf. Sci. 2015;90:464–502. doi: 10.1016/j.progsurf.2015.10.001. DOI
Crunteanu A. Givernaud J. Leroy J. Mardivirin D. Champeaux C. Orlianges J.-C. Catherinot A. Blondy P. Sci. Technol. Adv. Mater. 2010;11:065002. doi: 10.1088/1468-6996/11/6/065002. PubMed DOI PMC
Kim B.-J. Lee Y. W. Chae B.-G. Yun S. J. Oh S.-Y. Kim H.-T. Lim Y.-S. Appl. Phys. Lett. 2007;90:023515. doi: 10.1063/1.2431456. DOI
Khan Z. Singh P. Ansari S. A. Manippady S. R. Jaiswal A. Saxena M. Small. 2021;17:2006651. doi: 10.1002/smll.202006651. PubMed DOI
Yang Z. Ko C. Ramanathan S. Annu. Rev. Mater. Res. 2011;41:337–367. doi: 10.1146/annurev-matsci-062910-100347. DOI
Dong K. Choe H. S. Wang X. Liu H. Saha B. Ko C. Deng Y. Tom K. B. Lou S. Wang L. Grigoropoulos C. P. You Z. Yao J. Wu J. Small. 2018;14:1703621. doi: 10.1002/smll.201703621. PubMed DOI
Lee M.-J. Park Y. Suh D.-S. Lee E.-H. Seo S. Kim D.-C. Jung R. Kang B.-S. Ahn S.-E. Lee C. B. Seo D. H. Cha Y.-K. Yoo I.-K. Kim J.-S. Park B. H. Adv. Mater. 2007;19:3919–3923. doi: 10.1002/adma.200700251. DOI
Driscoll T. Kim H.-T. Chae B.-G. Kim B.-J. Lee Y.-W. Jokerst N. M. Palit S. Smith D. R. Ventra M. D. Basov D. N. Science. 2009;325:1518–1521. doi: 10.1126/science.1176580. PubMed DOI
Butakov N. A. Valmianski I. Lewi T. Urban C. Ren Z. Mikhailovsky A. A. Wilson S. D. Schuller I. K. Schuller J. A. ACS Photonics. 2018;5:371–377. doi: 10.1021/acsphotonics.7b00334. DOI
Howes A. Zhu Z. Curie D. Avila J. R. Wheeler V. D. Haglund R. F. Valentine J. G. Nano Lett. 2020;20:4638–4644. doi: 10.1021/acs.nanolett.0c01574. PubMed DOI
Kepič P. Ligmajer F. Hrtoň M. Ren H. Menezes L. d. S. Maier S. A. Šikola T. ACS Photonics. 2021;8:1048–1057. doi: 10.1021/acsphotonics.1c00222. DOI
Brassard D. Fourmaux S. Jean-Jacques M. Kieffer J. El Khakani M. Appl. Phys. Lett. 2005;87:051910. doi: 10.1063/1.2001139. DOI
Wan C. Zhang Z. Woolf D. Hessel C. M. Rensberg J. Hensley J. M. Xiao Y. Shahsafi A. Salman J. Richter S. Sun Y. Qazilbash M. M. Schmidt-Grund R. Ronning C. Ramanathan S. Kats M. A. Ann. Phys. 2019;531:1900188. doi: 10.1002/andp.201900188. DOI
Jones A. C. Berweger S. Wei J. Cobden D. Raschke M. B. Nano Lett. 2010;10:1574–1581. doi: 10.1021/nl903765h. PubMed DOI
Liu M. K. Wagner M. Abreu E. Kittiwatanakul S. McLeod A. Fei Z. Goldflam M. Dai S. Fogler M. M. Lu J. Wolf S. A. Averitt R. D. Basov D. N. Phys. Rev. Lett. 2013;111:096602. doi: 10.1103/PhysRevLett.111.096602. PubMed DOI
Guo H. Chen K. Oh Y. Wang K. Dejoie C. Syed Asif S. A. Warren O. L. Shan Z. W. Wu J. Minor A. M. Nano Lett. 2011;11:3207–3213. doi: 10.1021/nl201460v. PubMed DOI
Griffiths C. H. Eastwood H. K. J. Appl. Phys. 2003;45:2201–2206. doi: 10.1063/1.1663568. DOI
Lee M.-H. Kim M.-G. Thin Solid Films. 1996;286:219–222. doi: 10.1016/S0040-6090(96)08536-7. DOI
Zhang P. Jiang K. Deng Q. You Q. Zhang J. Wu J. Hu Z. Chu J. J. Mater. Chem. C. 2015;3:5033–5040. doi: 10.1039/C5TC00002E. DOI
Sohn J. I. Joo H. J. Porter A. E. Choi C.-J. Kim K. Kang D. J. Welland M. E. Nano Lett. 2007;7:1570–1574. doi: 10.1021/nl070439q. PubMed DOI
Nag J. Haglund Jr R. F. J. Phys.: Condens. Matter. 2008;20:264016. doi: 10.1088/0953-8984/20/26/264016. DOI
Li W. Ji S. Li Y. Huang A. Luo H. Jin P. RSC Adv. 2014;4:13026–13033. doi: 10.1039/C3RA47666A. DOI
Ligmajer F. Kejík L. Tiwari U. Qiu M. Nag J. Konečný M. Šikola T. Jin W. Haglund R. F. Appavoo K. Lei D. Y. ACS Photonics. 2018;5:2561–2567. doi: 10.1021/acsphotonics.7b01384. DOI
Mitsuishi T. Jpn. J. Appl. Phys. 1967;6:1060. doi: 10.1143/JJAP.6.1060. DOI
Moatti A. Sachan R. Cooper V. R. Narayan J. Sci. Rep. 2019;9:3009. doi: 10.1038/s41598-019-39529-z. PubMed DOI PMC
Qazilbash M. M. Brehm M. Chae B.-G. Ho P.-C. Andreev G. O. Kim B.-J. Yun S. J. Balatsky A. V. Maple M. B. Keilmann F. Kim H.-T. Basov D. N. Science. 2007;318:1750–1753. doi: 10.1126/science.1150124. PubMed DOI
O'Callahan B. T. Jones A. C. Hyung Park J. Cobden D. H. Atkin J. M. Raschke M. B. Nat. Commun. 2015;6:6849. doi: 10.1038/ncomms7849. PubMed DOI
Stinson H. T. Sternbach A. Najera O. Jing R. McLeod A. S. Slusar T. V. Mueller A. Anderegg L. Kim H. T. Rozenberg M. Basov D. N. Nat. Commun. 2018;9:3604. doi: 10.1038/s41467-018-05998-5. PubMed DOI PMC
Egerton R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, Springer Science & Business Media, 2011
Varela M. Findlay S. D. Lupini A. R. Christen H. M. Borisevich A. Y. Dellby N. Krivanek O. L. Nellist P. D. Oxley M. P. Allen L. J. Pennycook S. J. Phys. Rev. Lett. 2004;92:095502. doi: 10.1103/PhysRevLett.92.095502. PubMed DOI
Hage F. S. Radtke G. Kepaptsoglou D. M. Lazzeri M. Ramasse Q. M. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136. PubMed DOI
Yang H. Konečná A. Xu X. Cheong S.-W. Batson P. E. García de Abajo F. J. Garfunkel E. ACS Nano. 2022;16:18795–18805. doi: 10.1021/acsnano.2c07540. PubMed DOI
Tan H. Verbeeck J. Abakumov A. Van Tendeloo G. Ultramicroscopy. 2012;116:24–33. doi: 10.1016/j.ultramic.2012.03.002. DOI
Batson P. E. Heath J. R. Phys. Rev. Lett. 1993;71:911–914. doi: 10.1103/PhysRevLett.71.911. PubMed DOI
Hébert C. Willinger M. Su D. S. Pongratz P. Schattschneider P. Schlögl R. Eur. Phys. J. B. 2002;28:407–414. doi: 10.1140/epjb/e2002-00244-4. DOI
Su D. S. Zandbergen H. W. Tiemeijer P. C. Kothleitner G. Hävecker M. Hébert C. Knop-Gericke A. Freitag B. H. Hofer F. Schlögl R. Micron. 2003;34:235–238. doi: 10.1016/S0968-4328(03)00033-7. PubMed DOI
Li X. Gloter A. Gu H. Luo J. Cao X. Jin P. Colliex C. Scr. Mater. 2014;78–79:41–44. doi: 10.1016/j.scriptamat.2014.01.029. DOI
Zhang H.-T. Zhang L. Mukherjee D. Zheng Y.-X. Haislmaier R. C. Alem N. Engel-Herbert R. Nat. Commun. 2015;6:8475. doi: 10.1038/ncomms9475. PubMed DOI PMC
Moatti A. Sachan R. Prater J. Narayan J. ACS Appl. Mater. Interfaces. 2017;9:24298–24307. doi: 10.1021/acsami.7b05620. PubMed DOI
Zhang Z. Guo H. Ding W. Zhang B. Lu Y. Ke X. Liu W. Chen F. Sui M. Nano Lett. 2017;17:851–855. doi: 10.1021/acs.nanolett.6b04118. PubMed DOI
Gauntt B. D. Dickey E. C. Microsc. Microanal. 2009;15:1002–1003. doi: 10.1017/S1431927609096366. DOI
Zhou H. Chisholm M. F. Yang T.-H. Pennycook S. J. Narayan J. J. Appl. Phys. 2011;110:073515. doi: 10.1063/1.3642980. DOI
Pofelski A. Jia H. Deng S. Yu H. Park T. J. Manna S. Chan M. K. Sankaranarayanan S. K. R. S. Ramanathan S. Zhu Y. Nano Lett. 2024;24:1974–1980. doi: 10.1021/acs.nanolett.3c04411. PubMed DOI
García de Abajo F. J. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI
Mayer J. Giannuzzi L. A. Kamino T. Michael J. MRS Bull. 2007;32:400–407. doi: 10.1557/mrs2007.63. DOI
Protochips Fusion, https://www.protochips.com/products/fusion/, accessed 04-June-2023
Scott J. Thomas P. MacKenzie M. McFadzean S. Wilbrink J. Craven A. Nicholson W. Ultramicroscopy. 2008;108:1586–1594. doi: 10.1016/j.ultramic.2008.05.006. PubMed DOI
Horák M. Šikola T. Ultramicroscopy. 2020;216:113044. doi: 10.1016/j.ultramic.2020.113044. PubMed DOI
Horák M. Stöger-Pollach M. Ultramicroscopy. 2015;157:73–78. doi: 10.1016/j.ultramic.2015.06.005. PubMed DOI
Kana J. B. Ndjaka J. Vignaud G. Gibaud A. Maaza M. Opt. Commun. 2011;284:807–812. doi: 10.1016/j.optcom.2010.10.009. DOI
Marvel R. E. Harl R. R. Craciun V. Rogers B. R. Haglund R. F. Acta Mater. 2015;91:217–226. doi: 10.1016/j.actamat.2015.03.009. DOI
Idrobo J. C. Lupini A. R. Feng T. Unocic R. R. Walden F. S. Gardiner D. S. Lovejoy T. C. Dellby N. Pantelides S. T. Krivanek O. L. Phys. Rev. Lett. 2018;120:095901. doi: 10.1103/PhysRevLett.120.095901. PubMed DOI
Malis T. Cheng S. C. Egerton R. F. J. Electron Microsc. Tech. 1988;8:193–200. doi: 10.1002/jemt.1060080206. PubMed DOI
Mitchell D. R. G. J. Microsc. 2006;224:187–196. doi: 10.1111/j.1365-2818.2006.01690.x. PubMed DOI
Malis T. Cheng S. C. Egerton R. F. J. Electron Microsc. Tech. 1988;8:193–200. doi: 10.1002/jemt.1060080206. PubMed DOI
Wolfram Mathematica, https://www.wolfram.com/mathematica
Gloter A. Serin V. Turquat C. Cesari C. Leroux C. Nihoul G. Eur. Phys. J. B. 2001;22:179–186. doi: 10.1007/PL00011142. DOI
Frati F. Hunault M. O. J. Y. de Groot F. M. F. Chem. Rev. 2020;120:4056–4110. doi: 10.1021/acs.chemrev.9b00439. PubMed DOI PMC
Su D. S. Wieske M. Beckmann E. Blume A. Mestl G. Schlögl R. Catal. Lett. 2001;75:81–86. doi: 10.1023/A:1016754922933. DOI
Blaha P. Schwarz K. Tran F. Laskowski R. Madsen G. K. H. Marks L. D. J. Chem. Phys. 2020;152:074101. doi: 10.1063/1.5143061. PubMed DOI
Felde B. Niessner W. Schalch D. Scharmann A. Werling M. Thin Solid Films. 1997;305:61–65. doi: 10.1016/S0040-6090(97)00148-X. DOI
Espinosa-Magana F. Rosas A. Esparza-Ponce H. Ochoa-Lara M. Aguilar-Elguezabal A. Micron. 2009;40:787–792. doi: 10.1016/j.micron.2009.07.007. PubMed DOI