Analytical electron microscopy analysis of insulating and metallic phases in nanostructured vanadium dioxide

. 2024 Jun 25 ; 6 (13) : 3338-3346. [epub] 20240503

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38933858

Vanadium dioxide (VO2) is a strongly correlated material that exhibits the insulator-to-metal transition (IMT) near room temperature, which makes it a promising candidate for applications in nanophotonics or optoelectronics. However, creating VO2 nanostructures with the desired functionality can be challenging due to microscopic inhomogeneities that can significantly impact the local optical and electronic properties. Thin lamellas, produced by focused ion beam milling from a homogeneous layer, provide a useful prototype for studying VO2 at the truly microscopic level using a scanning transmission electron microscope (STEM). High-resolution imaging is used to identify structural inhomogeneities while electron energy-loss spectroscopy (EELS) supported by statistical analysis helps to detect V x O y stoichiometries with a reduced oxidation number of vanadium at the areas of thickness below 70 nm. On the other hand, the thicker areas are dominated by vanadium dioxide, where the signatures of the IMT are detected in both core-loss and low-loss EELS experiments with in situ heating. The experimental results are interpreted with ab initio and semi-classical calculations. This work shows that structural inhomogeneities such as pores and cracks present no harm to the desired optical properties of VO2 samples.

Zobrazit více v PubMed

Morosan E. Natelson D. Nevidomskyy A. H. Si Q. Adv. Mater. 2012;24:4896–4923. doi: 10.1002/adma.201202018. PubMed DOI

Budai J. D. Hong J. Manley M. E. Specht E. D. Li C. W. Tischler J. Z. Abernathy D. L. Said A. H. Leu B. M. Boatner L. A. McQueeney R. J. Delaire O. Nature. 2014;515:535–539. doi: 10.1038/nature13865. PubMed DOI

Nag J. Haglund R. F. Payzant E. A. More K. L. J. Appl. Phys. 2012;112:103532. doi: 10.1063/1.4764040. DOI

Wu B. Zimmers A. Aubin H. Ghosh R. Liu Y. Lopez R. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:241410. doi: 10.1103/PhysRevB.84.241410. DOI

Aetukuri N. B. Gray A. X. Drouard M. Cossale M. Gao L. Reid A. H. Kukreja R. Ohldag H. Jenkins C. A. Arenholz E. Roche K. P. Dürr H. A. Samant M. G. Parkin S. S. P. Nat. Phys. 2013;9:661–666.

Lei D. Y. Appavoo K. Ligmajer F. Sonnefraud Y. Haglund R. F. Maier S. A. ACS Photonics. 2015;2:1306–1313.

Wegkamp D. Stähler J. Prog. Surf. Sci. 2015;90:464–502. doi: 10.1016/j.progsurf.2015.10.001. DOI

Crunteanu A. Givernaud J. Leroy J. Mardivirin D. Champeaux C. Orlianges J.-C. Catherinot A. Blondy P. Sci. Technol. Adv. Mater. 2010;11:065002. doi: 10.1088/1468-6996/11/6/065002. PubMed DOI PMC

Kim B.-J. Lee Y. W. Chae B.-G. Yun S. J. Oh S.-Y. Kim H.-T. Lim Y.-S. Appl. Phys. Lett. 2007;90:023515. doi: 10.1063/1.2431456. DOI

Khan Z. Singh P. Ansari S. A. Manippady S. R. Jaiswal A. Saxena M. Small. 2021;17:2006651. doi: 10.1002/smll.202006651. PubMed DOI

Yang Z. Ko C. Ramanathan S. Annu. Rev. Mater. Res. 2011;41:337–367. doi: 10.1146/annurev-matsci-062910-100347. DOI

Dong K. Choe H. S. Wang X. Liu H. Saha B. Ko C. Deng Y. Tom K. B. Lou S. Wang L. Grigoropoulos C. P. You Z. Yao J. Wu J. Small. 2018;14:1703621. doi: 10.1002/smll.201703621. PubMed DOI

Lee M.-J. Park Y. Suh D.-S. Lee E.-H. Seo S. Kim D.-C. Jung R. Kang B.-S. Ahn S.-E. Lee C. B. Seo D. H. Cha Y.-K. Yoo I.-K. Kim J.-S. Park B. H. Adv. Mater. 2007;19:3919–3923. doi: 10.1002/adma.200700251. DOI

Driscoll T. Kim H.-T. Chae B.-G. Kim B.-J. Lee Y.-W. Jokerst N. M. Palit S. Smith D. R. Ventra M. D. Basov D. N. Science. 2009;325:1518–1521. doi: 10.1126/science.1176580. PubMed DOI

Butakov N. A. Valmianski I. Lewi T. Urban C. Ren Z. Mikhailovsky A. A. Wilson S. D. Schuller I. K. Schuller J. A. ACS Photonics. 2018;5:371–377. doi: 10.1021/acsphotonics.7b00334. DOI

Howes A. Zhu Z. Curie D. Avila J. R. Wheeler V. D. Haglund R. F. Valentine J. G. Nano Lett. 2020;20:4638–4644. doi: 10.1021/acs.nanolett.0c01574. PubMed DOI

Kepič P. Ligmajer F. Hrtoň M. Ren H. Menezes L. d. S. Maier S. A. Šikola T. ACS Photonics. 2021;8:1048–1057. doi: 10.1021/acsphotonics.1c00222. DOI

Brassard D. Fourmaux S. Jean-Jacques M. Kieffer J. El Khakani M. Appl. Phys. Lett. 2005;87:051910. doi: 10.1063/1.2001139. DOI

Wan C. Zhang Z. Woolf D. Hessel C. M. Rensberg J. Hensley J. M. Xiao Y. Shahsafi A. Salman J. Richter S. Sun Y. Qazilbash M. M. Schmidt-Grund R. Ronning C. Ramanathan S. Kats M. A. Ann. Phys. 2019;531:1900188. doi: 10.1002/andp.201900188. DOI

Jones A. C. Berweger S. Wei J. Cobden D. Raschke M. B. Nano Lett. 2010;10:1574–1581. doi: 10.1021/nl903765h. PubMed DOI

Liu M. K. Wagner M. Abreu E. Kittiwatanakul S. McLeod A. Fei Z. Goldflam M. Dai S. Fogler M. M. Lu J. Wolf S. A. Averitt R. D. Basov D. N. Phys. Rev. Lett. 2013;111:096602. doi: 10.1103/PhysRevLett.111.096602. PubMed DOI

Guo H. Chen K. Oh Y. Wang K. Dejoie C. Syed Asif S. A. Warren O. L. Shan Z. W. Wu J. Minor A. M. Nano Lett. 2011;11:3207–3213. doi: 10.1021/nl201460v. PubMed DOI

Griffiths C. H. Eastwood H. K. J. Appl. Phys. 2003;45:2201–2206. doi: 10.1063/1.1663568. DOI

Lee M.-H. Kim M.-G. Thin Solid Films. 1996;286:219–222. doi: 10.1016/S0040-6090(96)08536-7. DOI

Zhang P. Jiang K. Deng Q. You Q. Zhang J. Wu J. Hu Z. Chu J. J. Mater. Chem. C. 2015;3:5033–5040. doi: 10.1039/C5TC00002E. DOI

Sohn J. I. Joo H. J. Porter A. E. Choi C.-J. Kim K. Kang D. J. Welland M. E. Nano Lett. 2007;7:1570–1574. doi: 10.1021/nl070439q. PubMed DOI

Nag J. Haglund Jr R. F. J. Phys.: Condens. Matter. 2008;20:264016. doi: 10.1088/0953-8984/20/26/264016. DOI

Li W. Ji S. Li Y. Huang A. Luo H. Jin P. RSC Adv. 2014;4:13026–13033. doi: 10.1039/C3RA47666A. DOI

Ligmajer F. Kejík L. Tiwari U. Qiu M. Nag J. Konečný M. Šikola T. Jin W. Haglund R. F. Appavoo K. Lei D. Y. ACS Photonics. 2018;5:2561–2567. doi: 10.1021/acsphotonics.7b01384. DOI

Mitsuishi T. Jpn. J. Appl. Phys. 1967;6:1060. doi: 10.1143/JJAP.6.1060. DOI

Moatti A. Sachan R. Cooper V. R. Narayan J. Sci. Rep. 2019;9:3009. doi: 10.1038/s41598-019-39529-z. PubMed DOI PMC

Qazilbash M. M. Brehm M. Chae B.-G. Ho P.-C. Andreev G. O. Kim B.-J. Yun S. J. Balatsky A. V. Maple M. B. Keilmann F. Kim H.-T. Basov D. N. Science. 2007;318:1750–1753. doi: 10.1126/science.1150124. PubMed DOI

O'Callahan B. T. Jones A. C. Hyung Park J. Cobden D. H. Atkin J. M. Raschke M. B. Nat. Commun. 2015;6:6849. doi: 10.1038/ncomms7849. PubMed DOI

Stinson H. T. Sternbach A. Najera O. Jing R. McLeod A. S. Slusar T. V. Mueller A. Anderegg L. Kim H. T. Rozenberg M. Basov D. N. Nat. Commun. 2018;9:3604. doi: 10.1038/s41467-018-05998-5. PubMed DOI PMC

Egerton R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, Springer Science & Business Media, 2011

Varela M. Findlay S. D. Lupini A. R. Christen H. M. Borisevich A. Y. Dellby N. Krivanek O. L. Nellist P. D. Oxley M. P. Allen L. J. Pennycook S. J. Phys. Rev. Lett. 2004;92:095502. doi: 10.1103/PhysRevLett.92.095502. PubMed DOI

Hage F. S. Radtke G. Kepaptsoglou D. M. Lazzeri M. Ramasse Q. M. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136. PubMed DOI

Yang H. Konečná A. Xu X. Cheong S.-W. Batson P. E. García de Abajo F. J. Garfunkel E. ACS Nano. 2022;16:18795–18805. doi: 10.1021/acsnano.2c07540. PubMed DOI

Tan H. Verbeeck J. Abakumov A. Van Tendeloo G. Ultramicroscopy. 2012;116:24–33. doi: 10.1016/j.ultramic.2012.03.002. DOI

Batson P. E. Heath J. R. Phys. Rev. Lett. 1993;71:911–914. doi: 10.1103/PhysRevLett.71.911. PubMed DOI

Hébert C. Willinger M. Su D. S. Pongratz P. Schattschneider P. Schlögl R. Eur. Phys. J. B. 2002;28:407–414. doi: 10.1140/epjb/e2002-00244-4. DOI

Su D. S. Zandbergen H. W. Tiemeijer P. C. Kothleitner G. Hävecker M. Hébert C. Knop-Gericke A. Freitag B. H. Hofer F. Schlögl R. Micron. 2003;34:235–238. doi: 10.1016/S0968-4328(03)00033-7. PubMed DOI

Li X. Gloter A. Gu H. Luo J. Cao X. Jin P. Colliex C. Scr. Mater. 2014;78–79:41–44. doi: 10.1016/j.scriptamat.2014.01.029. DOI

Zhang H.-T. Zhang L. Mukherjee D. Zheng Y.-X. Haislmaier R. C. Alem N. Engel-Herbert R. Nat. Commun. 2015;6:8475. doi: 10.1038/ncomms9475. PubMed DOI PMC

Moatti A. Sachan R. Prater J. Narayan J. ACS Appl. Mater. Interfaces. 2017;9:24298–24307. doi: 10.1021/acsami.7b05620. PubMed DOI

Zhang Z. Guo H. Ding W. Zhang B. Lu Y. Ke X. Liu W. Chen F. Sui M. Nano Lett. 2017;17:851–855. doi: 10.1021/acs.nanolett.6b04118. PubMed DOI

Gauntt B. D. Dickey E. C. Microsc. Microanal. 2009;15:1002–1003. doi: 10.1017/S1431927609096366. DOI

Zhou H. Chisholm M. F. Yang T.-H. Pennycook S. J. Narayan J. J. Appl. Phys. 2011;110:073515. doi: 10.1063/1.3642980. DOI

Pofelski A. Jia H. Deng S. Yu H. Park T. J. Manna S. Chan M. K. Sankaranarayanan S. K. R. S. Ramanathan S. Zhu Y. Nano Lett. 2024;24:1974–1980. doi: 10.1021/acs.nanolett.3c04411. PubMed DOI

García de Abajo F. J. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI

Mayer J. Giannuzzi L. A. Kamino T. Michael J. MRS Bull. 2007;32:400–407. doi: 10.1557/mrs2007.63. DOI

Protochips Fusion, https://www.protochips.com/products/fusion/, accessed 04-June-2023

Scott J. Thomas P. MacKenzie M. McFadzean S. Wilbrink J. Craven A. Nicholson W. Ultramicroscopy. 2008;108:1586–1594. doi: 10.1016/j.ultramic.2008.05.006. PubMed DOI

Horák M. Šikola T. Ultramicroscopy. 2020;216:113044. doi: 10.1016/j.ultramic.2020.113044. PubMed DOI

Horák M. Stöger-Pollach M. Ultramicroscopy. 2015;157:73–78. doi: 10.1016/j.ultramic.2015.06.005. PubMed DOI

Kana J. B. Ndjaka J. Vignaud G. Gibaud A. Maaza M. Opt. Commun. 2011;284:807–812. doi: 10.1016/j.optcom.2010.10.009. DOI

Marvel R. E. Harl R. R. Craciun V. Rogers B. R. Haglund R. F. Acta Mater. 2015;91:217–226. doi: 10.1016/j.actamat.2015.03.009. DOI

Idrobo J. C. Lupini A. R. Feng T. Unocic R. R. Walden F. S. Gardiner D. S. Lovejoy T. C. Dellby N. Pantelides S. T. Krivanek O. L. Phys. Rev. Lett. 2018;120:095901. doi: 10.1103/PhysRevLett.120.095901. PubMed DOI

Malis T. Cheng S. C. Egerton R. F. J. Electron Microsc. Tech. 1988;8:193–200. doi: 10.1002/jemt.1060080206. PubMed DOI

Mitchell D. R. G. J. Microsc. 2006;224:187–196. doi: 10.1111/j.1365-2818.2006.01690.x. PubMed DOI

Malis T. Cheng S. C. Egerton R. F. J. Electron Microsc. Tech. 1988;8:193–200. doi: 10.1002/jemt.1060080206. PubMed DOI

Wolfram Mathematica, https://www.wolfram.com/mathematica

Gloter A. Serin V. Turquat C. Cesari C. Leroux C. Nihoul G. Eur. Phys. J. B. 2001;22:179–186. doi: 10.1007/PL00011142. DOI

Frati F. Hunault M. O. J. Y. de Groot F. M. F. Chem. Rev. 2020;120:4056–4110. doi: 10.1021/acs.chemrev.9b00439. PubMed DOI PMC

Su D. S. Wieske M. Beckmann E. Blume A. Mestl G. Schlögl R. Catal. Lett. 2001;75:81–86. doi: 10.1023/A:1016754922933. DOI

Blaha P. Schwarz K. Tran F. Laskowski R. Madsen G. K. H. Marks L. D. J. Chem. Phys. 2020;152:074101. doi: 10.1063/1.5143061. PubMed DOI

Felde B. Niessner W. Schalch D. Scharmann A. Werling M. Thin Solid Films. 1997;305:61–65. doi: 10.1016/S0040-6090(97)00148-X. DOI

Espinosa-Magana F. Rosas A. Esparza-Ponce H. Ochoa-Lara M. Aguilar-Elguezabal A. Micron. 2009;40:787–792. doi: 10.1016/j.micron.2009.07.007. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...