Single-Molecule Identification of the Isomers of a Lipidic Antibody Activator
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AI167421
NIAID NIH HHS - United States
PubMed
38935930
PubMed Central
PMC11247479
DOI
10.1021/acs.jpclett.4c00164
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Molecular structural elucidation can be accomplished by different techniques, such as nuclear magnetic resonance or X-ray diffraction. However, the former does not give information about the three-dimensional atomic arrangement, and the latter needs crystallizable solid samples. An alternative is direct, real-space visualization of the molecules by cryogenic scanning tunneling microscopy (STM). This technique is usually limited to thermally robust molecules because an annealing step is required for sample deposition. A landmark development has been the coupling of STM with electrospray deposition (ESD), which smooths the process and widens the scope of the visualization technique. In this work, we present the on-surface characterization of air-, light-, and temperature-sensitive rhamnopolyene with relevance in molecular biology. Supported by theoretical calculations, we characterize two isomers of this flexible molecule, confirming the potential of the technique to inspect labile, non-crystallizable compounds.
Department of Global Health University of Washington Seattle Washington 98105 United States
Department of Pediatrics University of Washington Seattle Washington 98105 United States
Institute of Physics Czech Academy of Sciences 16200 Prague Czech Republic
Instituto de Ciencia de Materiales de Madrid 28049 Madrid Spain
Zobrazit více v PubMed
Dugas H.Bioorganic Chemistry. A Chemical Approach to Enzyme Action; Springer-Verlag: New York, 1996;10.1007/978-1-4612-2426-6. DOI
Van Vranken D.; Weiss G.. Introduction to Bioorganic Chemistry and Chemical Biology; Garland Science: New York, 2012;10.1201/9780203381090. DOI
Nicolaou K. C.; Snyder S. A. Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation. Angew. Chem., Int. Ed. 2005, 44, 1012–1044. 10.1002/anie.200460864. PubMed DOI
Menna M.; Imperatore C.; Mangoni A.; Della Sala G.; Taglialatela-Scafati O. Challenges in the Configuration Assignment of Natural Products. A Case-Selective Perspective. Nat. Prod. Rep. 2019, 36, 476–489. 10.1039/C8NP00053K. PubMed DOI
Holton J. M.; Frankel K. A. The Minimum Crystal Size Needed for a Complete Diffraction Data Set. Acta Crystallogr., Sect. D: Struct. Biol. 2010, 66, 393–408. 10.1107/S0907444910007262. PubMed DOI PMC
Inokuma Y.; Yoshioka S.; Ariyoshi J.; Arai T.; Hitora Y.; Takada K.; Matsunaga S.; Rissanen K.; Fujita M. X-ray Analysis on the Nanogram to Microgram Scale Using Porous Complexes. Nature 2013, 495, 461–466. 10.1038/nature11990. PubMed DOI
Zigon N.; Duplan V.; Wada N.; Fujita M. Crystalline Sponge Method: X-ray Structure Analysis of Small Molecules by Post-Orientation within Porous Crystals–Principle and Proof-of-Concept Studies. Angew. Chem., Int. Ed. 2021, 60, 25204–25222. 10.1002/anie.202106265. PubMed DOI
Cheng Y. Single-Particle Cryo-EM—How Did It Get Here and Where Will It Go. Science 2018, 361, 876–880. 10.1126/science.aat4346. PubMed DOI PMC
Gross L. Recent Advances in Submolecular Resolution with Scanning Probe Microscopy. Nat. Chem. 2011, 3, 273–278. 10.1038/nchem.1008. PubMed DOI
Jelínek P. High Resolution SPM Imaging of Organic Molecules with Functionalized Tips. J. Phys.: Condens. Matter 2017, 29, 34300210.1088/1361-648X/aa76c7. PubMed DOI
Bian K.; Gerber C.; Heinrich A. J.; Müller D. J.; Scheuring S.; Jiang Y. Scanning Probe Microscopy. Nat. Rev. Methods Primers 2021, 1, 36.10.1038/s43586-021-00033-2. DOI
Zhang X.; Zeng Q.; Wang C. On-Surface Single Molecule Synthesis Chemistry: A Promising Bottom-Up Approach towards Functional Surfaces. Nanoscale 2013, 5, 8269–8287. 10.1039/c3nr01611k. PubMed DOI
Wang C.; Chi L.; Ciesielski A.; Samorì P. Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Angew. Chem., Int. Ed. 2019, 58, 18758–18775. 10.1002/anie.201906645. PubMed DOI
Hla S.-W.; Rieder K.-H. STM Control of Chemical Reactions: Single-Molecule Synthesis. Annu. Rev. Phys. Chem. 2003, 54, 307–330. 10.1146/annurev.physchem.54.011002.103852. PubMed DOI
Spong J.; Mizes H.; LaComb L. Jr; Dovek M. M.; Frommer J. E.; Foster J. S. Contrast Mechanism for Resolving Organic Molecules with Tunnelling Microscopy. Nature 1989, 338, 137–139. 10.1038/338137a0. DOI
Foster J.; Frommer J. Imaging of Liquid Crystals using a Tunnelling Microscope. Nature 1988, 333, 542–545. 10.1038/333542a0. DOI
Hansma P. K.; Elings V. B.; Marti O.; Bracker C. E. Scanning Tunneling Microscopy and Atomic Force Microscopy: Application to Biology and Technology. Science 1988, 242, 209–216. 10.1126/science.3051380. PubMed DOI
Hamann C.; Woltmann R.; Hong I.-P.; Hauptmann N.; Karan S.; Berndt R. Ultrahigh Vacuum Deposition of Organic Molecules by Electrospray Ionization. Rev. Sci. Instrum. 2011, 82, 03390310.1063/1.3553010. PubMed DOI
Rauschenbach S.; Ternes M.; Harnau L.; Kern K. Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules. Annu. Rev. Anal. Chem. 2016, 9, 473–498. 10.1146/annurev-anchem-071015-041633. PubMed DOI
Kley C. S.; Dette C.; Rinke G.; Patrick C. E.; Čechal J.; Jung S. J.; Baur M.; Dürr M.; Rauschenbach S.; Giustino F.; Stepanow S.; Kern K. Atomic-Scale Observation of Multiconformational Binding and Energy Level Alignment of Ruthenium-Based Photosensitizers on TiO2 Anatase. Nano Lett. 2014, 14, 563–569. 10.1021/nl403717d. PubMed DOI
Deng Z.; Thontasen N.; Malinowski N.; Rinke G.; Harnau L.; Rauschenbach S.; Kern K. A Close Look at Proteins: Submolecular Resolution of Two- and Three-Dimensionally Folded Cytochrome C at Surfaces. Nano Lett. 2012, 12, 2452–2458. 10.1021/nl3005385. PubMed DOI
Warr D. A.; Perdigão L. M. A.; Pinfold H.; Blohm J.; Stringer D.; Leventis A.; Bronstein H.; Troisi A.; Costantini G. Sequencing Conjugated Polymers by Eye. Sci. Adv. 2018, 4, eaas954310.1126/sciadv.aas9543. PubMed DOI PMC
Abb S.; Harnau L.; Gutzler R.; Rauschenbach S.; Kern K. Two-Dimensional Honeycomb Network Through Sequence-Controlled Self-Assembly of Oligopeptides. Nat. Commun. 2016, 7, 10335.10.1038/ncomms10335. PubMed DOI PMC
Rauschenbach S.; Rinke G.; Gutzler R.; Abb S.; Albarghash A.; Le D.; Rahman T. S.; Dürr M.; Harnau L.; Kern K. Two-Dimensional Folding of Polypeptides into Molecular Nanostructures at Surfaces. ACS Nano 2017, 11, 2420–2427. 10.1021/acsnano.6b06145. PubMed DOI
Abb S.; Tarrat N.; Cortés J.; Andriyevsky B.; Harnau L.; Schön J. C.; Rauschenbach S.; Kern K. Carbohydrate Self-Assembly at Surfaces: STM Imaging of Sucrose Conformation and Ordering on Cu(100). Angew. Chem., Int. Ed. 2019, 58, 8336–8340. 10.1002/anie.201901340. PubMed DOI PMC
Abb S.; Tarrat N.; Cortés J.; Andriyevsky B.; Harnau L.; Schön J. C.; Rauschenbach S.; Kern K. Polymorphism in Carbohydrate Self-Assembly at Surfaces: STM Imaging and Theoretical Modelling of Trehalose on Cu(100). RSC Adv. 2019, 9, 35813–35819. 10.1039/C9RA06764G. PubMed DOI PMC
Wu X.; Delbianco M.; Anggara K.; Michnowicz T.; Pardo-Vargas A.; Bharate P.; Sen S.; Pristl M.; Rauschenbach S.; Schlickum U.; Abb S.; Seeberger P. H.; Kern K. Imaging Single Glycans. Nature 2020, 582, 375–378. 10.1038/s41586-020-2362-1. PubMed DOI
Seibel J.; Fittolani G.; Mirhosseini H.; Wu X.; Rauschenbach S.; Anggara K.; Seeberger P. H.; Delbianco M.; Kühne T. D.; Schlickum U.; Kern K. Visualizing Chiral Interactions in Carbohydrates Adsorbed on Au(111) by High-Resolution STM Imaging. Angew. Chem., Int. Ed. 2023, 62, e20230573310.1002/anie.202305733. PubMed DOI
Anggara K.; Sršan L.; Jaroentomeechai T.; Wu X.; Rauschenbach S.; Narimatsu Y.; Clausen H.; Ziegler T.; Miller R. L.; Kern K. Direct Observation of Glycans Bonded to Proteins and Lipids at the Single-Molecule Level. Science 2023, 382, 219–223. 10.1126/science.adh3856. PubMed DOI PMC
Moro S.; Siemons N.; Drury O.; Warr D. A.; Moriarty T. A.; Perdigão L. M. A.; Pearce D.; Moser M.; Hallani R. K.; Parker J.; McCulloch I.; Frost J. M.; Nelson J.; Costantini G. The Effect of Glycol Side Chains on the Assembly and Microstructure of Conjugated Polymers. ACS Nano 2022, 16, 21303–21314. 10.1021/acsnano.2c09464. PubMed DOI PMC
Esser T. K.; Böhning J.; Önür A.; Chinthapalli D. K.; Eriksson L.; Grabarics M.; Fremdling P.; Konijnenberg A.; Makarov A.; Botman A.; Peter C.; Benesch J. L. P.; Robinson C. V.; Gault J.; Baker L.; Bharat T. A. M.; Rauschenbach S. Cryo-EM of Soft-Landed β-Galactosidase: Gas-Phase and Native Structures are Remarkably Similar. Sci. Adv. 2024, 10, eadl462810.1126/sciadv.adl4628. PubMed DOI PMC
Rodríguez-Galván A.; Contreras-Torres F. F. Scanning Tunneling Microscopy of Biological Structures: An Elusive Goal for Many Years. Nanomaterials 2022, 12, 3013.10.3390/nano12173013. PubMed DOI PMC
Anggara K.; Zhu Y.; Delbianco M.; Rauschenbach S.; Abb S.; Seeberger P. H.; Kern K. Exploring the Molecular Conformation Space by Soft Molecule–Surface Collision. J. Am. Chem. Soc. 2020, 142, 21420–21427. 10.1021/jacs.0c09933. PubMed DOI PMC
Rosa-Fraile M.; Rodríguez-Granger J.; Haidour-Benamin A.; Cuerva J. M.; Sampedro A. Granadaene: Proposed Structure of the Group B Streptococcus Polyenic Pigment. Appl. Environ. Microbiol. 2006, 72, 6367–6370. 10.1128/AEM.00756-06. PubMed DOI PMC
Paradas M.; Jurado R.; Haidour A.; Rodríguez Granger J.; Sampedro Martínez A.; de la Rosa Fraile M.; Robles R.; Justicia J.; Cuerva J. M. Clarifying the Structure of Granadaene: Total Synthesis of Related Analogue [2]-Granadaene and Confirmation of its Absolute Stereochemistry. Bioorg. Med. Chem. 2012, 20, 6655–6661. 10.1016/j.bmc.2012.09.017. PubMed DOI
Whidbey C.; Harrell M. I.; Burnside K.; Ngo L.; Becraft A. K.; Iyer L. M.; Aravind L.; Hitti J.; Adams Waldorf K. M.; Rajagopal L. A Hemolytic Pigment of Group B Streptococcus Allows Bacterial Penetration of Human Placenta. J. Exp. Med. 2013, 210, 1265–1281. 10.1084/jem.20122753. PubMed DOI PMC
Boldenow E.; Gendrin C.; Ngo L.; Bierle C.; Vornhagen J.; Coleman M.; Merillat S.; Armistead B.; Whidbey C.; Alishetti V.; Santana-Ufret V.; Ogle J.; Gough M.; Srinouanprachanh S.; MacDonald J. W.; Bammler T. K.; Bansal A.; Liggitt H. D.; Rajagopal L.; Adams Waldorf K. M. Group B Streptococcus Circumvents Neutrophils and Neutrophil Extracellular Traps during Amniotic Cavity Invasion and Preterm Labor. Sci. Immunol. 2016, 1, eaah457610.1126/sciimmunol.aah4576. PubMed DOI PMC
Siemens N.; Oehmcke-Hecht S.; Hoßmann J.; Skorka S. B.; Nijhuis R. H. T.; Ruppen C.; Skrede S.; Rohde M.; Schultz D.; Lalk M.; Itzek A.; Pieper D. H.; van den Bout C. J.; Claas E. C. J.; Kuijper E. J.; Mauritz R.; Sendi P.; Wunderink H. F.; Norrby-Teglund A. Prothrombotic and Proinflammatory Activities of the β-Hemolytic Group B Streptococcal Pigment. J. Innate Immun. 2020, 12, 291–303. 10.1159/000504002. PubMed DOI PMC
Armistead B.; Quach P.; Snyder J. M.; Santana-Ufret V.; Furuta A.; Brokaw A.; Rajagopal L. Hemolytic Membrane Vesicles of Group B Streptococcus Promote Infection. J. Infect. Dis. 2021, 223, 1488–1496. 10.1093/infdis/jiaa548. PubMed DOI PMC
Zangwill K. M.; Schuchat A.; Wenger J. D. Group B Streptococcal Disease in the United States, 1990: Report from a Multistate Active Surveillance System. MMWR CDC Surveill Summ. 1992, 41, 25–32. PubMed
Francois Watkins L. K.; McGee L.; Schrag S. J.; Beall B.; Jain J. H.; Pondo T.; Farley M. M.; Harrison L. H.; Zansky S. M.; Baumbach J.; Lynfield R.; Snippes Vagnone P.; Miller L. A.; Schaffner W.; Thomas A. R.; Watt J. P.; Petit S.; Langley G. E. Epidemiology of Invasive Group B Streptococcal Infections Among Nonpregnant Adults in the United States, 2008–2016. JAMA Int. Med. 2019, 179, 479–488. 10.1001/jamainternmed.2018.7269. PubMed DOI PMC
Sendi P.; Johansson L.; Norrby-Teglund A. Invasive Group B Streptococcal Disease in Non-Pregnant Adults: A Review with Emphasis on Skin and Soft-Tissue Infections. Infection 2008, 36, 100–111. 10.1007/s15010-007-7251-0. PubMed DOI
Lawn J. E.; Bianchi-Jassir F.; Russell N. J.; Kohli-Lynch M.; Tann C. J.; Hall J.; Madrid L.; Baker C. J.; Bartlett L.; Cutland C.; Gravett M. G.; Heath P. T.; Ip M.; Le Doare K.; Madhi S. A.; Rubens C. E.; Saha S. K.; Schrag S.; Sobanjo-ter Meulen A.; Vekemans J.; Seale A. C. Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children: Why, What, and How to Undertake Estimates?. Clin. Infect. Dis. 2017, 65, S89–S99. 10.1093/cid/cix653. PubMed DOI PMC
Seale A. C.; Bianchi-Jassir F.; Russell N. J.; Kohli-Lynch M.; Tann C. J.; Hall J.; Madrid L.; Blencowe H.; Cousens S.; Baker C. J.; Bartlett L.; Cutland C.; Gravett M. G.; Heath P. T.; Ip M.; Le Doare K.; Madhi S. A.; Rubens C. E.; Saha S. K.; Schrag S. J.; Sobanjo-ter Meulen A.; Vekemans J.; Lawn J. E. Estimates of the Burden of Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children. Clin. Infect. Dis. 2017, 65, S200–S219. 10.1093/cid/cix664. PubMed DOI PMC
Gonçalves B. P; Procter S. R; Paul P.; Chandna J.; Lewin A.; Seedat F.; Koukounari A.; Dangor Z.; Leahy S.; Santhanam S.; John H. B; Bramugy J.; Bardají A.; Abubakar A.; Nasambu C.; Libster R.; Sánchez Yanotti C.; Horváth-Puhó E.; Sørensen H. T; van de Beek D.; Bijlsma M. W; Gardner W. M; Kassebaum N.; Trotter C.; Bassat Q.; Madhi S. A; Lambach P.; Jit M.; Lawn J. E; Søgaard K. K.; van Kassel M. N.; Snoek L.; de Gier B.; van der Ende A.; Hahne S. J M; Harden L. M.; Ghoor A.; Mbatha S.; Lowick S.; Laughton B.; Jaye T.; Lala S. G; Sithole P.; Msayi J.; Kumalo N.; Msibi T. N.; Arumugam A.; Murugesan N.; Rajendraprasad N.; Priya M.; Mabrouk A.; Katana P. V.; Mwangome E.; Newton C. R.; Mucasse H.; Aerts C.; Massora S.; Medina V.; Rojas A.; Amado D.; Llapur C. J.; Hossain A. K. M. T.; Rahman Q. S.-u.; Ip M.; Seale A.; Heath P. T.; Le Doare K.; Khalil A.; Schrag S. J.; Sobanjo-ter Meulen A.; Mason E.; Blau D. M; El Arifeen S.; Assefa N.; Onyango D.; Sow S. O.; Mandomando I.; Ogbuanu I.; Kotloff K. L.; Scott J. A. G.; Gurley E. S.; Barr B. A. T.; Mahtab S. Group B Streptococcus Infection During Pregnancy and Infancy: Estimates of Regional and Global Burden. Lancet Glob. Health 2022, 10, e807–e819. 10.1016/S2214-109X(22)00093-6. PubMed DOI PMC
Armistead B.; Herrero-Foncubierta P.; Coleman M.; Quach P.; Whidbey C.; Justicia J.; Tapia R.; Casares R.; Millán A.; Haidour A.; Granger J. R.; Vornhagen J.; Santana-Ufret V.; Merillat S.; Adams Waldorf K.; Cuerva J. M.; Rajagopal L. Lipid Analogs Reveal Features Critical for Hemolysis and Diminish Granadaene Mediated Group B Streptococcus Infection. Nat. Commun. 2020, 11, 1502.10.1038/s41467-020-15282-0. PubMed DOI PMC
Furuta A.; Coleman M.; Casares R.; Seepersaud R.; Orvis A.; Brokaw A.; Quach P.; Nguyen S.; Sweeney E.; Sharma K.; Wallen G.; Sanghavi R.; Mateos-Gil J.; Cuerva J. M.; Millán A.; Rajagopal L. CD1 and iNKT Cells Mediate Immune Responses against the GBS Hemolytic Lipid Toxin Induced by a Non-Toxic Analog. PLoS Pathog. 2023, 19, e101149010.1371/journal.ppat.1011490. PubMed DOI PMC
Cao N.; Yang B.; Riss A.; Rosen J.; Björk J.; Barth J. V. On-Surface Synthesis of Enetriynes. Nat. Commun. 2023, 14, 1255.10.1038/s41467-023-36828-y. PubMed DOI PMC
Pracht P.; Bohle F.; Grimme S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. 10.1039/C9CP06869D. PubMed DOI
Mendieta-Moreno J. I.; Walker R. C.; Lewis J. P.; Gómez-Puertas P.; Mendieta J.; Ortega J. An Efficient Local-Orbital DFT QM/MM Method for Biomolecular Systems. J. Chem. Theory Comput. 2014, 10, 2185–2193. 10.1021/ct500033w. PubMed DOI
Horcas I.; Fernández R.; Gómez-Rodríguez J. M.; Colchero J.; Gómez-Herrero J.; Baro A. M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 01370510.1063/1.2432410. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
Lewis J. P.; Jelinek P.; Ortega J.; Demkov A. A.; Trabada D. G.; Haycock B.; Wang H.; Adams G.; Tomfohr J. K.; Abad E.; Wang H.; Drabold D. A. Advances and Applications in the FIREBALL Ab Initio Tight-Binding Molecular-Dynamics Formalism. Phys. Status Solidi B 2011, 248, 1989–2007. 10.1002/pssb.201147259. DOI
Heinz H.; Lin T.-J.; Kishore Mishra R.; Emami F. S. Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29, 1754–1765. 10.1021/la3038846. PubMed DOI