The phosphate-solubilising fungi in sustainable agriculture: unleashing the potential of fungal biofertilisers for plant growth

. 2024 Aug ; 69 (4) : 697-712. [epub] 20240627

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38937405
Odkazy

PubMed 38937405
DOI 10.1007/s12223-024-01181-0
PII: 10.1007/s12223-024-01181-0
Knihovny.cz E-zdroje

Phosphate-solubilising fungi (PSF) are beneficial microorganisms that play a pivotal role in plant growth by increasing the availability of phosphorus (P) in soil. Although phosphorus is an essential nutrient for plants, it often becomes inaccessible as it binds into insoluble forms. PSF effectively facilitate the release of this bound phosphorus through diverse mechanisms. Numerous fungal species demonstrate the ability to solubilise various types of phosphate compounds. Among the commonly researched PSF are Penicillium, Aspergillus, Rhizopus, Fusarium, Trichoderma, and Sclerotium. Moreover, yeasts such as Saccharomyces cerevisiae can potentially be leveraged as PSF. PSF secrete organic acids that chelate phosphate ions, thereby increasing their solubility in the soil. Moreover, PSF contribute to the decomposition of organic phosphorus compounds in soil by employing enzymes such as phosphatases, phytases, and phosphonatases. Furthermore, PSF can interact with other soil microorganisms, including nitrogen-fixing bacteria and arbuscular mycorrhizal fungi (AM-fungi), fostering synergistic effects that further enhance plant growth and nutrient absorption. The utilisation of PSF as biofertilisers offers numerous advantages over chemical fertilisers, including environmental friendliness, cost-effectiveness, and enhanced fertiliser utilisation efficiency. Furthermore, PSF can prove beneficial in challenging environments characterised by high phosphate sorption. Hence, this review serves as an updated study aimed at broadening the understanding of PSF and its potential applications in P solubilisation. This review also focuses on the diversity of PSF, the mechanisms underlying solubilisation, ecological roles of PSF in soil microbiome, and the benefits of sustainable agriculture. By delving into the ecological roles of PSF and their potential as biofertilisers, this study contributes to a deeper understanding of sustainable agriculture practices and addresses challenges in phosphate-scarce environments.

Zobrazit více v PubMed

Abd El-Latif H, Mohamed HM (2011) Molecular genetic identification of yeast strains isolated from Egyptian soils for solubilization of inorganic phosphates and growth promotion of corn plants. J Microbiol Biotechnol 21:55–61. https://doi.org/10.4014/jmb.1006.06045 DOI

Ahuja A, Ghosh SB, D’Souza SF (2007) Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization. Bioresour Technol 98:3408–3411. https://doi.org/10.1016/j.biortech.2006.10.041 PubMed DOI

Akbar M, Chohan SA, Yasin NA et al (2023) Mycorrhizal inoculation enhanced tillering in field grown wheat, nutritional enrichment and soil properties. PeerJ 11:e15686. https://doi.org/10.7717/peerj.15686 PubMed DOI PMC

Al-Fatih AM (2005) Phosphate solubilization in vitro by some soil yeasts. Qatar Univ Sci J 25:9–125. http://hdl.handle.net/10576/9742

Almario J, Jeena G, Wunder J et al (2017) Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci U S A 114:E9403–E9412. https://doi.org/10.1073/pnas.1710455114 PubMed DOI PMC

Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971 PubMed DOI PMC

Bielčik M, Aguilar-Trigueros CA, Lakovic M et al (2019) The role of active movement in fungal ecology and community assembly. Mov Ecol 7:36. https://doi.org/10.1186/s40462-019-0180-6 PubMed DOI PMC

Birhanu G, Zerihun T, Genene T et al (2017) Phosphate solubilizing fungi isolated and characterized from Teff rhizosphere soil collected from North Showa zone, Ethiopia. Afr J Microbiol Res 11:687–696. https://doi.org/10.5897/ajmr2017.8525 DOI

Bononi L, Chiaramonte JB, Pansa CC et al (2020) Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep 10:2858. https://doi.org/10.1038/s41598-020-59793-8 PubMed DOI PMC

Borges Chagas LF, Chagas Junior AF, Rodrigues de Carvalho M et al (2015) Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. J Soil Sci Plant Nutr 15:794–804. https://doi.org/10.4067/S0718-95162015005000054 DOI

Boubekri K, Soumare A, Lyamlouli K et al (2023) Improving the efficiency of phosphate rocks combined with phosphate solubilizing Actinomycetota to increase wheat growth under alkaline and acidic soils. Front Plant Sci 14:1154372. https://doi.org/10.3389/fpls.2023.1154372 PubMed DOI PMC

Central Research Institute for Dryland Agriculture (CRIDA) (2023) Biofertilizers in rainfed farming. https://assets.publishing.service.gov.uk/media/57a08ce4ed915d3cfd0016bc/R8192Bio.pdf

Chen YR, Kuo CY, Fu SF et al (2023) Plant growth-promoting properties of the phosphate-solubilizing red yeast Rhodosporidium paludigenum. World J Microbiol Biotechnol 39:54. https://doi.org/10.1007/s11274-022-03498-9 DOI

Chouyia FE, Ventorino V, Pepe O (2022) Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: a review. Front Plant Sci 13:1035358. https://doi.org/10.3389/fpls.2022.1035358 PubMed DOI PMC

Chuang CC, Kuo YL, Chao CC et al (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43:575–584. https://doi.org/10.1007/s00374-006-0140-3 DOI

Cui K, Xu T, Chen J et al (2022) Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. J Clean Prod 367:133110. https://doi.org/10.1016/j.jclepro.2022.133110 DOI

Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458. https://doi.org/10.1128/aem.58.5.1451-1458.1992 PubMed DOI PMC

de Oliveira MG, de Freitas ALM, Pereira OL et al (2014) Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64:239–249. https://doi.org/10.1007/s13213-013-0656-3 DOI

de Oliveira MJ, Murta HM, Valadares RV et al (2020) Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Miner Eng 155:106458. https://doi.org/10.1016/j.mineng.2020.106458 DOI

Doilom M, Guo JW, Phookamsak R et al (2020) Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front Microbiol 11:585215. https://doi.org/10.3389/fmicb.2020.585215 PubMed DOI PMC

Falih AM, Wainwright M (1995) Nitrification, S-oxidation and P-solubilization by the soil yeast Williopsis californica and by Saccharomyces cerevisiae. Mycol Res 99:200–204. https://doi.org/10.1016/S0953-7562(09)80886-1 DOI

Gizaw B (2017) Phosphate solubilizing yeast isolated and characterized from Teff rhizosphere soil collected from Gojam; Ethiopia. J Bacteriol Mycol 5:218–223

Gudiño-Gomezjurado ME, de Almeida LR, de Carvalho TS et al (2022) Phosphate–solubilizing fungi co–inoculated with Bradyrhizobium promote cowpea growth under varying N and P fertilization conditions. Sci Agric 79:e20210061. https://doi.org/10.1590/1678-992X-2021-0061 DOI

Hermosa R, Viterbo A, Chet I et al (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25. https://doi.org/10.1099/mic.0.052274-0 PubMed DOI

Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Biol Biochem 27:257–263. https://doi.org/10.1016/0038-0717(94)00190-C DOI

Jain R, Saxena J, Sharma V (2012) Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth. Folia Microbiol 57:533–541. https://doi.org/10.1007/s12223-012-0167-9 DOI

Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62:215–243. https://doi.org/10.1111/j.1469-185X.1987.tb00664.x DOI

Jiang Y, Tian J, Ge F (2020) New insight into carboxylic acid metabolisms and pH regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4. Curr Microbiol 77:4095–4103. https://doi.org/10.1007/s00284-020-02238-2 PubMed DOI

Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer, Berlin, Heidelberg DOI

Khan MS, Zaidi A, Ahemad M et al (2010) Plant growth promotion by phosphate solubilizing fungi - current perspective. Arch Agron Soil Sci 56:73–98. https://doi.org/10.1080/03650340902806469 DOI

Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan M, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer, Cham, Switzerland, pp 31–62 DOI

Kononova SV, Nesmeyanova MA (2002) Phosphonates and their degradation by microorganisms. Biochem (Moscow) 67:220–233. https://doi.org/10.1023/a:1014409929875 DOI

Kour D, Rana KL, Kaur T et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1 DOI

Kpomblekou-A K, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442–453 DOI

Leggett M, Cross J, Hnatowich G et al. (2004) Laboratory to the marketplace: scientific challenges in commercializing a phosphate solubilizing microorganism. In Soils and crops workshop. https://harvest.usask.ca/bitstreams/8ea1f1a4-d386-4c6c-a3d5-13ed0c3c0196/download

Li Z, Bai T, Dai L et al (2016) A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus Niger. Sci Rep 6:25313. https://doi.org/10.1038/srep25313 PubMed DOI PMC

Mehta P, Sharma R, Putatunda C et al (2019) Endophytic fungi: role in phosphate solubilization. In: Singh BP (ed) Advances in endophytic fungal research. Fungal Biology, Springer, Cham, Switzerland, pp 183–209 DOI

Millán JL (2006) Alkaline phosphatases. Purinergic Signal 2:335–341. https://doi.org/10.1007/s11302-005-5435-6 PubMed DOI PMC

Mistry J (2023) Agright PSF. https://www.indiamart.com/proddetail/psf-phosphate-solubilizing-fungi-2850512863833.html

Mitra D, Anđelković S, Panneerselvam P et al (2020) Phosphate-solubilizing microbes and biocontrol agent for plant nutrition and protection: current perspective. Commun Soil Sci Plant Anal 51:645–657. https://doi.org/10.1080/00103624.2020.1729379 DOI

Mittal V, Singh O, Nayyar H et al (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727. https://doi.org/10.1016/j.soilbio.2007.10.008 DOI

Omar SA (1997) The role of rock-phosphate-solubilizing fungi and vesicular-arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–218. https://doi.org/10.1023/A:1008830129262 DOI

Osorio NW, Habte M (2013a) Synergistic effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on Leucaena seedlings in an Oxisol fertilized with rock phosphate. Botany 91:274–281. https://doi.org/10.1139/cjb-2012-0226 DOI

Osorio NW, Habte M (2013b) Phosphate desorption from the surface of soil mineral particles by a phosphate-solubilizing fungus. Biol Fertil Soils 49:481–486. https://doi.org/10.1007/s00374-012-0763-5 DOI

Pandey R (2015) Mineral nutrition of plants. In: Bahadur B, Venkat Rajam M, Shijram L et al (eds) Plant biology and biotechnology volume I: plant diversity, organization, function and improvement. Springer India, pp 499–538

Perea Rojas YC, Arias RM, Medel Ortiz R et al (2019) Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agrofor Syst 93:961–972. https://doi.org/10.1007/s10457-018-0190-1 DOI

Prabhu N, Borkar S, Garg S (2019) Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances. In: Meena SN, Naik MM (eds) Advances in biological science research: a practical approach. Elsevier India, pp 161–176. https://doi.org/10.1016/B978-0-12-817497-5.00011-2

Puente ME, Bashan Y, Li CY et al (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642. https://doi.org/10.1055/s-2004-821100 PubMed DOI

Rawat P, Das S, Shankhdhar D et al (2021) Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr 21:49–68. https://doi.org/10.1007/s42729-020-00342-7 DOI

Raymond NS, Gómez-Muñoz B, van der Bom FJT et al (2021) Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. New Phytol 229:1268–1277. https://doi.org/10.1111/nph.16924 PubMed DOI

Rodríguez H, Fraga R, Gonzalez T et al (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. https://doi.org/10.1007/s11104-006-9056-9 DOI

Sagoe CI, Ando T, Kouno K et al (1998) Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Sci Plant Nutr 44:617–625. https://doi.org/10.1080/00380768.1998.10414485 DOI

Sayer JA, Gadd GM (1997) Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 101:653–661. https://doi.org/10.1017/S0953756296003140 DOI

Sharma SB, Sayyed RZ, Trivedi MH et al (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. https://doi.org/10.1186/2193-1801-2-587 PubMed DOI PMC

Shen Y, Ma Z, Chen H et al (2023) Effects of macromolecular organic acids on reducing inorganic phosphorus fixation in soil. Heliyon 9:e14892. https://doi.org/10.1016/j.heliyon.2023.e14892 PubMed DOI PMC

Silva LI, Pereira MC, de Carvalho AMX et al (2023) Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture 13:462. https://doi.org/10.3390/agriculture13020462 DOI

Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol 47:30–34. https://doi.org/10.1016/j.ejsobi.2010.10.005 DOI

Sun Q, Fu Z, Finlay R et al (2019) Transcriptome analysis provides novel insights into the capacity of the ectomycorrhizal fungus Amanita pantherina to weather K-containing feldspar and apatite. Appl Environ Microbiol 85:e00719–e00819. https://doi.org/10.1128/AEM.00719-19 PubMed DOI PMC

Tallapragada P, Gudimi M (2011) Phosphate solubility and biocontrol activity of Trichoderma harzianum. Turk J Biol 35:593–600. https://doi.org/10.3906/biy-0911-4 DOI

Thomas GV, Shantaram MV, Saraswathy N (1985) Occurrence and activity of phosphate-solubilizing fungi from coconut plantation soils. Plant Soil 4:357–364. https://doi.org/10.1007/BF02181903 DOI

Tian J, Ge F, Zhang D et al (2021) Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology (basel) 10:158. https://doi.org/10.3390/biology10020158 PubMed DOI

van Loon LC (1985) Pathogenesis-related proteins. Plant Mol Biol 4:111–116. https://doi.org/10.1007/BF02418757 PubMed DOI

Vassilev N, Vassileva M, Azcon R et al (2001a) Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarowia lipolytica. Biotechnol Lett 23:907–909. https://doi.org/10.1023/A:1010599618627 DOI

Vassilev N, Vassileva M, Azcon R et al (2001b) Application of free and Ca-alginate-entrapped Glomus deserticola and Yarowia lipolytica in a soil-plant system. J Biotechnol 91:237–242. https://doi.org/10.1016/S0168-1656(01)00341-8 PubMed DOI

Vassilev N, Vassileva M, Azcon R et al (2001c) Interactions of an arbuscular mycorrhizal fungus with free or co-encapsulated cells of Rhizobium trifoli and Yarowia lipolytica inoculated into a soil-plant system. Biotechnol Lett 23:149–151. https://doi.org/10.1023/A:1010395813017 DOI

Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144. https://doi.org/10.1007/s00253-006-0380-z PubMed DOI

Vassilev N, Mendes G, Costa M et al (2014) Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates. Geomicrobiol J 31:751–763. https://doi.org/10.1080/01490451.2013.822615 DOI

Vassileva M, Serrano M, Bravo V et al (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85:1287–1299. https://doi.org/10.1007/s00253-009-2366-0 PubMed DOI

Vassileva M, Medina A, Reyes A et al (2012) Remediation of heavy metal contaminated soils by phosphate bearing biotechnological products. In: Mason CA (ed) Bioremediation: biotechnology, engineering and environmental management, 1st edn. Nova Science, New York, pp 465–474

Vassileva M, Mendes G, Deriu M et al (2022) Fungi, P-solubilization, and plant nutrition. Microorganisms 10:1716. https://doi.org/10.3390/microorganisms10091716 PubMed DOI PMC

Vassileva M, Martos V, del Moral LFG et al (2023) Effect of the mode of fermentation on the behavior of Penicillium bilaiae in conditions of abiotic stress. Microorganisms 11:1064. https://doi.org/10.3390/microorganisms11041064 PubMed DOI PMC

Vera-Morales M, López Medina SE, Naranjo-Morán J et al (2023) Nematophagous fungi: a review of their phosphorus solubilization potential. Microorganisms 11:137. https://doi.org/10.3390/microorganisms11010137 PubMed DOI PMC

Viren CS (2023) Biofertilizer PSF phosphate solubilizing fungi liquid biofertilizer, for soil & foliar, packaging type: bottle. https://www.indiamart.com/proddetail/phosphate-solubilizing-fungi-liquid-biofertilizer-24936644655.html

Vyas P, Rahi P, Chauhan A et al (2007) Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil. Mycol Res 111:931–938. https://doi.org/10.1016/j.mycres.2007.06.003 PubMed DOI

Wahid OAA, Mehana TA (2000) Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol Res 155:221–227. https://doi.org/10.1016/S0944-5013(00)80036-1 PubMed DOI

Wakelin SA, Warren RA, Harvey PR et al (2004a) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43. https://doi.org/10.1007/s00374-004-0750-6 DOI

Wakelin SA, Warren RA, Ryder MH (2004b) Effect of soil properties on growth promotion of wheat by Penicillium radicum. Aust J Soil Res 42:897–904. https://doi.org/10.1071/SR04035 DOI

Wang X, Wang C, Sui J et al (2018) Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities. AMB Express 8:63. https://doi.org/10.1186/s13568-018-0593-4 PubMed DOI PMC

Wang C, Pan G, Lu X et al (2023) Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering. Front Bioeng Biotechnol 11:1181078. https://doi.org/10.3389/fbioe.2023.1181078 PubMed DOI PMC

Waqas M, Khan AL, Kamran M et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773. https://doi.org/10.3390/molecules170910754 PubMed DOI PMC

Whitelaw MA (1999) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151. https://doi.org/10.1016/S0065-2113(08)60948-7 DOI

Wu X, Rensing C, Han D et al (2022) Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems 7:e0110721. https://doi.org/10.1128/msystems.01107-21 PubMed DOI

Xiao CQ, Chi RA, Huang XH et al (2008) Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecol Eng 33:187–193. https://doi.org/10.1016/j.ecoleng.2008.04.001 DOI

Xiao C, Chi R, He H et al (2009) Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol 159:330–342. https://doi.org/10.1007/s12010-009-8590-3 PubMed DOI

Yan Y, Mao Q, Wang Y et al (2021) Trichoderma harzianum induces resistance to root-knot nematodes by increasing secondary metabolite synthesis and defense-related enzyme activity in Solanum lycopersicum L. Biol Control 158:104609. https://doi.org/10.1016/j.biocontrol.2021.104609 DOI

Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Turk J Agr Forest 30:223–230. https://journals.tubitak.gov.tr/agriculture/vol30/iss3/7/

Zaidi A, Khan MS, Ahemad M et al (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, Heidelberg, pp 23–50 DOI

Zboińska E, Maliszewska I, Lejczak B et al (1992) Degradation of organophosphonates by Penicillium citrinum. Lett Appl Microbiol 15:269–272. https://doi.org/10.1111/j.1472-765X.1992.tb00781.x DOI

Zhang Y, Chen FS, Wu XQ et al (2018) Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS ONE 13:e0199625. https://doi.org/10.1371/journal.pone.0199625 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...