Glycolysis in hepatic stellate cells coordinates fibrogenic extracellular vesicle release spatially to amplify liver fibrosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 DK136511
NIDDK NIH HHS - United States
R37 AA021171
NIAAA NIH HHS - United States
R01 DK117861
NIDDK NIH HHS - United States
R01 AA021171
NIAAA NIH HHS - United States
K01 DK124358
NIDDK NIH HHS - United States
PubMed
38941469
PubMed Central
PMC11212729
DOI
10.1126/sciadv.adn5228
Knihovny.cz E-zdroje
- MeSH
- extracelulární vezikuly * metabolismus MeSH
- glykolýza * MeSH
- jaterní cirhóza * metabolismus patologie genetika MeSH
- jaterní hvězdicovité buňky * metabolismus patologie MeSH
- játra metabolismus patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- Rab proteiny vázající GTP metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Rab proteiny vázající GTP MeSH
Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.
Cardiovascular Research Center Yale University New Haven CI 06510 USA
Department of Cardiovascular Medicine Mayo Clinic Rochester MN 55905 USA
Department of Computer Science Hanyang University Seoul 04763 Republic of South Korea
Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN 55905 USA
Department of Pathology Division of Anatomic Pathology Mayo Clinic Rochester MN 55905 USA
Department of Quantitative Health Sciences Mayo Clinic Rochester MN 55905 USA
Department of Urology Mayo Clinic Rochester MN 55905 USA
Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN 55905 USA
Metabolomics Core Mayo Clinic Rochester MN 55905 USA
Zobrazit více v PubMed
Asrani S. K., Devarbhavi H., Eaton J., Kamath P. S., Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019). PubMed
Wong R. J., Kachru N., Martinez D. J., Moynihan M., Ozbay A. B., Gordon S. C., Real-world comorbidity burden, health care utilization, and costs of nonalcoholic steatohepatitis patients with advanced liver diseases. J. Clin. Gastroenterol. 55, 891–902 (2021). PubMed PMC
Bhattacharya M., Ramachandran P., Immunology of human fibrosis. Nat. Immunol. 24, 1423–1433 (2023). PubMed
Cogliati B., Yashaswini C. N., Wang S., Sia D., Friedman S. L., Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat. Rev. Gastroenterol. Hepatol. 20, 647–661 (2023). PubMed PMC
Ramachandran P., Matchett K. P., Dobie R., Wilson-Kanamori J. R., Henderson N. C., Single-cell technologies in hepatology: New insights into liver biology and disease pathogenesis. Nat. Rev. Gastroenterol. Hepatol. 17, 457–472 (2020). PubMed
Rosenthal S. B., Liu X., Ganguly S., Dhar D., Pasillas M. P., Ricciardelli E., Li R. Z., Troutman T. D., Kisseleva T., Glass C. K., Brenner D. A., Heterogeneity of HSCs in a mouse model of NASH. Hepatology 74, 667–685 (2021). PubMed PMC
Wang S., Li K., Pickholz E., Dobie R., Matchett K. P., Henderson N. C., Carrico C., Driver I., Borch Jensen M., Chen L., Petitjean M., Bhattacharya D., Fiel M. I., Liu X., Kisseleva T., Alon U., Adler M., Medzhitov R., Friedman S. L., An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 15, eadd3949 (2023). PubMed PMC
Dobie R., Wilson-Kanamori J. R., Henderson B. E. P., Smith J. R., Matchett K. P., Portman J. R., Wallenborg K., Picelli S., Zagorska A., Pendem S. V., Hudson T. E., Wu M. M., Budas G. R., Breckenridge D. G., Harrison E. M., Mole D. J., Wigmore S. J., Ramachandran P., Ponting C. P., Teichmann S. A., Marioni J. C., Henderson N. C., Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019). PubMed PMC
Kostallari E., Wei B., Sicard D., Li J., Cooper S. A., Gao J., Dehankar M., Li Y., Cao S., Yin M., Tschumperlin D. J., Shah V. H., Stiffness is associated with hepatic stellate cell heterogeneity during liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 322, G234–G246 (2022). PubMed PMC
Ben-Moshe S., Shapira Y., Moor A. E., Manco R., Veg T., Bahar Halpern K., Itzkovitz S., Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1, 899–911 (2019). PubMed PMC
Manco R., Itzkovitz S., Liver zonation. J. Hepatol. 74, 466–468 (2021). PubMed
Paris J., Henderson N. C., Liver zonation, revisited. Hepatology 76, 1219–1230 (2022). PubMed PMC
Halpern K. B., Shenhav R., Matcovitch-Natan O., Toth B., Lemze D., Golan M., Massasa E. E., Baydatch S., Landen S., Moor A. E., Brandis A., Giladi A., Avihail A. S., David E., Amit I., Itzkovitz S., Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017). PubMed PMC
Hildebrandt F., Andersson A., Saarenpaa S., Larsson L., Van Hul N., Kanatani S., Masek J., Ellis E., Barragan A., Mollbrink A., Andersson E. R., Lundeberg J., Ankarklev J., Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat. Commun. 12, 7046 (2021). PubMed PMC
Dolin C. E., Arteel G. E., The matrisome, inflammation, and liver disease. Semin. Liver Dis. 40, 180–188 (2020). PubMed PMC
Tsuchida T., Friedman S. L., Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017). PubMed
Chen Y., Choi S. S., Michelotti G. A., Chan I. S., Swiderska-Syn M., Karaca G. F., Xie G., Moylan C. A., Garibaldi F., Premont R., Suliman H. B., Piantadosi C. A., Diehl A. M., Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 143, 1319–1329.e11 (2012). PubMed PMC
Gilgenkrantz H., Mallat A., Moreau R., Lotersztajn S., Targeting cell-intrinsic metabolism for antifibrotic therapy. J. Hepatol. 74, 1442–1454 (2021). PubMed
Mejias M., Gallego J., Naranjo-Suarez S., Ramirez M., Pell N., Manzano A., Suner C., Bartrons R., Mendez R., Fernandez M., CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis. Gastroenterology 159, 273–288 (2020). PubMed
Smith-Cortinez N., van Eunen K., Heegsma J., Serna-Salas S. A., Sydor S., Bechmann L. P., Moshage H., Bakker B. M., Faber K. N., Simultaneous induction of glycolysis and oxidative phosphorylation during activation of hepatic stellate cells reveals novel mitochondrial targets to treat liver fibrosis. Cells 9, 2456 (2020). PubMed PMC
Greuter T., Yaqoob U., Gan C., Jalan-Sakrikar N., Kostallari E., Lu J., Gao J., Sun L., Liu M., Sehrawat T. S., Ibrahim S. H., Furuta K., Nozickova K., Huang B. Q., Gao B., Simons M., Cao S., Shah V. H., Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells in vitro and in vivo. J. Hepatol. 77, 723–734 (2022). PubMed PMC
Gao J., Wei B., de Assuncao T. M., Liu Z., Hu X., Ibrahim S., Cooper S. A., Cao S., Shah V. H., Kostallari E., Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J. Hepatol. 73, 1144–1154 (2020). PubMed PMC
Kostallari E., Hirsova P., Prasnicka A., Verma V. K., Yaqoob U., Wongjarupong N., Roberts L. R., Shah V. H., Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 68, 333–348 (2018). PubMed PMC
Kostallari E., Valainathan S., Biquard L., Shah V. H., Rautou P. E., Role of extracellular vesicles in liver diseases and their therapeutic potential. Adv. Drug Deliv. Rev. 175, 113816 (2021). PubMed PMC
Parthasarathy G., Hirsova P., Kostallari E., Sidhu G. S., Ibrahim S. H., Malhi H., Extracellular vesicles in hepatobiliary health and disease. Compr. Physiol. 13, 4631–4658 (2023). PubMed PMC
Whitham M., Parker B. L., Friedrichsen M., Hingst J. R., Hjorth M., Hughes W. E., Egan C. L., Cron L., Watt K. I., Kuchel R. P., Jayasooriah N., Estevez E., Petzold T., Suter C. M., Gregorevic P., Kiens B., Richter E. A., James D. E., Wojtaszewski J. F. P., Febbraio M. A., Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251.e4 (2018). PubMed
Hirsova P., Ibrahim S. H., Krishnan A., Verma V. K., Bronk S. F., Werneburg N. W., Charlton M. R., Shah V. H., Malhi H., Gores G. J., Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150, 956–967 (2016). PubMed PMC
Wang R., Ding Q., Yaqoob U., de Assuncao T. M., Verma V. K., Hirsova P., Cao S., Mukhopadhyay D., Huebert R. C., Shah V. H., Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J. Biol. Chem. 290, 30684–30696 (2015). PubMed PMC
Martin-Mateos R., De Assuncao T. M., Arab J. P., Jalan-Sakrikar N., Yaqoob U., Greuter T., Verma V. K., Mathison A. J., Cao S., Lomberk G., Mathurin P., Urrutia R., Huebert R. C., Shah V. H., Enhancer of zeste homologue 2 inhibition attenuates TGF-β dependent hepatic stellate cell activation and liver fibrosis. Cell. Mol. Gastroenterol. Hepatol. 7, 197–209 (2019). PubMed PMC
Patra K. C., Wang Q., Bhaskar P. T., Miller L., Wang Z., Wheaton W., Chandel N., Laakso M., Muller W. J., Allen E. L., Jha A. K., Smolen G. A., Clasquin M. F., Robey B., Hay N., Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24, 213–228 (2013). PubMed PMC
Yu P., Wilhelm K., Dubrac A., Tung J. K., Alves T. C., Fang J. S., Xie Y., Zhu J., Chen Z., De Smet F., Zhang J., Jin S. W., Sun L., Sun H., Kibbey R. G., Hirschi K. K., Hay N., Carmeliet P., Chittenden T. W., Eichmann A., Potente M., Simons M., FGF-dependent metabolic control of vascular development. Nature 545, 224–228 (2017). PubMed PMC
Kling S., Lang B., Hammer H. S., Naboulsi W., Sprenger H., Frenzel F., Potz O., Schwarz M., Braeuning A., Templin M. F., Characterization of hepatic zonation in mice by mass-spectrometric and antibody-based proteomics approaches. Biol. Chem. 403, 331–343 (2022). PubMed
Rosenberger F. A., Thielert M., Strauss M. T., Schweizer L., Ammar C., Madler S. C., Metousis A., Skowronek P., Wahle M., Madden K., Gote-Schniering J., Semenova A., Schiller H. B., Rodriguez E., Nordmann T. M., Mund A., Mann M., Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat. Methods 20, 1530–1536 (2023). PubMed PMC
Ramachandran P., Dobie R., Wilson-Kanamori J. R., Dora E. F., Henderson B. E. P., Luu N. T., Portman J. R., Matchett K. P., Brice M., Marwick J. A., Taylor R. S., Efremova M., Vento-Tormo R., Carragher N. O., Kendall T. J., Fallowfield J. A., Harrison E. M., Mole D. J., Wigmore S. J., Newsome P. N., Weston C. J., Iredale J. P., Tacke F., Pollard J. W., Ponting C. P., Marioni J. C., Teichmann S. A., Henderson N. C., Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019). PubMed PMC
Carrascal M., Areny-Balaguero A., de-Madaria E., Cardenas-Jaen K., Garcia-Rayado G., Rivera R., Mateos R. M. M., Pascual-Moreno I., Gironella M., Abian J., Closa D., Inflammatory capacity of exosomes released in the early stages of acute pancreatitis predicts the severity of the disease. J. Pathol. 256, 83–92 (2022). PubMed
Fenselau C., Ostrand-Rosenberg S., Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell. Immunol. 359, 104258 (2021). PubMed PMC
Wei D., Zhan W., Gao Y., Huang L., Gong R., Wang W., Zhang R., Wu Y., Gao S., Kang T., RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 31, 157–177 (2021). PubMed PMC
Chua C. E. L., Tang B. L., Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome. J. Biol. Chem. 289, 12375–12389 (2014). PubMed PMC
Kowal J., Arras G., Colombo M., Jouve M., Morath J. P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Thery C., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. U.S.A. 113, E968–E977 (2016). PubMed PMC
Farooq M., Simoes Eugenio M., Piquet-Pellorce C., Dion S., Raguenes-Nicol C., Santamaria K., Kara-Ali G. H., Larcher T., Dimanche-Boitrel M. T., Samson M., Le Seyec J., Receptor-interacting protein kinase-1 ablation in liver parenchymal cells promotes liver fibrosis in murine NASH without affecting other symptoms. J. Mol. Med. 100, 1027–1038 (2022). PubMed
Yang K., Huang N., Sun J., Dai W., Chen M., Zeng J., Transforming growth factor-β induced protein regulates pulmonary fibrosis via the G-protein signaling modulator 2 /Snail axis. Peptides 155, 170842 (2022). PubMed
Wei X., Zou S., Xie Z., Wang Z., Huang N., Cen Z., Hao Y., Zhang C., Chen Z., Zhao F., Hu Z., Teng X., Gui Y., Liu X., Zheng H., Zhou H., Chen S., Cheng J., Zeng F., Zhou Y., Wu W., Hu J., Wei Y., Cui K., Li J., EDIL3 deficiency ameliorates adverse cardiac remodelling by neutrophil extracellular traps (NET)-mediated macrophage polarization. Cardiovasc. Res. 118, 2179–2195 (2022). PubMed
Wang K., Fang S., Liu Q., Gao J., Wang X., Zhu H., Zhu Z., Ji F., Wu J., Ma Y., Hu L., Shen X., Gao D., Zhu J., Liu P., Zhou H., TGF-β1/p65/MAT2A pathway regulates liver fibrogenesis via intracellular SAM. EBioMedicine 42, 458–469 (2019). PubMed PMC
Bates J., Vijayakumar A., Ghoshal S., Marchand B., Yi S., Kornyeyev D., Zagorska A., Hollenback D., Walker K., Liu K., Pendem S., Newstrom D., Brockett R., Mikaelian I., Kusam S., Ramirez R., Lopez D., Li L., Fuchs B. C., Breckenridge D. G., Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J. Hepatol. 73, 896–905 (2020). PubMed
Rho H., Terry A. R., Chronis C., Hay N., Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 35, 1406–1423.e8 (2023). PubMed
Bao C., Zhu S., Song K., He C., HK2: A potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways. Cell Commun. Signal 20, 132 (2022). PubMed PMC
Gall J. M., Wong V., Pimental D. R., Havasi A., Wang Z., Pastorino J. G., Bonegio R. G. B., Schwartz J. H., Borkan S. C., Hexokinase regulates Bax-mediated mitochondrial membrane injury following ischemic stress. Kidney Int. 79, 1207–1216 (2011). PubMed PMC
Pastorino J. G., Shulga N., Hoek J. B., Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277, 7610–7618 (2002). PubMed
Tan V. P., Miyamoto S., HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy 11, 963–964 (2015). PubMed PMC
Takata N., Miska J. M., Morgan M. A., Patel P., Billingham L. K., Joshi N., Schipma M. J., Dumar Z. J., Joshi N. R., Misharin A. V., Embry R. B., Fiore L., Gao P., Diebold L. P., McElroy G. S., Shilatifard A., Chandel N. S., Oliver G., Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat. Commun. 14, 4129 (2023). PubMed PMC
Wu H., Liang W., Han M., Zhen Y., Chen L., Li H., An Y., Mechanisms regulating wound healing: Functional changes in biology mediated by lactate and histone lactylation. J. Cell. Physiol. 238, 2243–2252 (2023). PubMed
Charrier A., Chen R., Chen L., Kemper S., Hattori T., Takigawa M., Brigstock D. R., Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver. Surgery 156, 548–555 (2014). PubMed PMC
Chen Q. T., Zhang Z. Y., Huang Q. L., Chen H. Z., Hong W. B., Lin T., Zhao W. X., Wang X. M., Ju C. Y., Wu L. Z., Huang Y. Y., Hou P. P., Wang W. J., Zhou D., Deng X., Wu Q., HK1 from hepatic stellate cell-derived extracellular vesicles promotes progression of hepatocellular carcinoma. Nat. Metab. 4, 1306–1321 (2022). PubMed PMC
Wang Z., Kim S. Y., Tu W., Kim J., Xu A., Yang Y. M., Matsuda M., Reolizo L., Tsuchiya T., Billet S., Gangi A., Noureddin M., Falk B. A., Kim S., Fan W., Tighiouart M., You S., Lewis M. S., Pandol S. J., Di Vizio D., Merchant A., Posadas E. M., Bhowmick N. A., Lu S. C., Seki E., Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 35, 1209–1226.e13 (2023). PubMed PMC
Hafemeister C., Satija R., Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019). PubMed PMC
Korsunsky I., Millard N., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P. R., Raychaudhuri S., Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). PubMed PMC
Hao Y., Hao S., Andersen-Nissen E., Mauck W. M. III, Zheng S., Butler A., Lee M. J., Wilk A. J., Darby C., Zager M., Hoffman P., Stoeckius M., Papalexi E., Mimitou E. P., Jain J., Srivastava A., Stuart T., Fleming L. M., Yeung B., Rogers A. J., McElrath J. M., Blish C. A., Gottardo R., Smibert P., Satija R., Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). PubMed PMC
Mederacke I., Dapito D. H., Affo S., Uchinami H., Schwabe R. F., High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat. Protoc. 10, 305–315 (2015). PubMed PMC
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T. R., STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC
Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Li J., Cai Z., Bomgarden R. D., Pike I., Kuhn K., Rogers J. C., Roberts T. M., Gygi S. P., Paulo J. A., TMTpro-18plex: The expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res. 20, 2964–2972 (2021). PubMed PMC
Nirujogi R. S., Wright J. D. Jr., Manda S. S., Zhong J., Na C. H., Meyerhoff J., Benton B., Jabbour R., Willis K., Kim M. S., Pandey A., Sekowski J. W., Phosphoproteomic analysis reveals compensatory effects in the piriform cortex of VX nerve agent exposed rats. Proteomics 15, 487–499 (2015). PubMed
Sathe G., Mangalaparthi K. K., Jain A., Darrow J., Troncoso J., Albert M., Moghekar A., Pandey A., Multiplexed phosphoproteomic study of brain in patients with Alzheimer’s disease and age-matched cognitively healthy controls. OMICS 24, 216–227 (2020). PubMed PMC
Sathe G., Na C. H., Renuse S., Madugundu A. K., Albert M., Moghekar A., Pandey A., Quantitative proteomic profiling of cerebrospinal fluid to identify candidate biomarkers for Alzheimer’s disease. Proteomics Clin. Appl. 13, e1800105 (2019). PubMed PMC
Singh S., Bhat M. Y., Sathe G., Gopal C., Sharma J., Madugundu A. K., Joshi N. S., Pandey A., Proteomic signatures of diffuse and intestinal subtypes of gastric cancer. Cancers 13, 5930 (2021). PubMed PMC
Thompson A., Schafer J., Kuhn K., Kienle S., Schwarz J., Schmidt G., Neumann T., Johnstone R., Mohammed A. K., Hamon C., Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003). PubMed
Wu X., Wang L., Pearson N. A., Renuse S., Cheng R., Liang Y., Mun D. G., Madugundu A. K., Xu Y., Gill P. S., Pandey A., Quantitative tyrosine phosphoproteome profiling of AXL receptor tyrosine kinase signaling network. Cancers 13, 4234 (2021). PubMed PMC
Zahari M. S., Wu X., Pinto S. M., Nirujogi R. S., Kim M. S., Fetics B., Philip M., Barnes S. R., Godfrey B., Gabrielson E., Nevo E., Pandey A., Phosphoproteomic profiling of tumor tissues identifies HSP27 Ser82 phosphorylation as a robust marker of early ischemia. Sci. Rep. 5, 13660 (2015). PubMed PMC
Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M., Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011). PubMed
Cox J., Mann M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed