Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34857782
PubMed Central
PMC8640072
DOI
10.1038/s41467-021-27354-w
PII: 10.1038/s41467-021-27354-w
Knihovny.cz E-zdroje
- MeSH
- anotace sekvence MeSH
- B-lymfocyty cytologie metabolismus MeSH
- dendritické buňky cytologie metabolismus MeSH
- endoteliální buňky cytologie metabolismus MeSH
- erytroblasty cytologie metabolismus MeSH
- genetická heterogenita * MeSH
- genová ontologie MeSH
- hepatocyty cytologie metabolismus MeSH
- játra cytologie metabolismus MeSH
- Kupfferovy buňky cytologie metabolismus MeSH
- makrofágy cytologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neutrofily cytologie metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Reconstruction of heterogeneity through single cell transcriptional profiling has greatly advanced our understanding of the spatial liver transcriptome in recent years. However, global transcriptional differences across lobular units remain elusive in physical space. Here, we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined by lobular zonation. By introducing novel computational approaches, we enable transcriptional gradient measurements between tissue structures, including several lobules in a variety of orientations. Further, our data suggests the presence of previously transcriptionally uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity of the organ. This study demonstrates how comprehensive spatial transcriptomic technologies can be used to delineate extensive spatial gene expression patterns in the liver, indicating its future impact for studies of liver function, development and regeneration as well as its potential in pre-clinical and clinical pathology.
Zobrazit více v PubMed
Chiang, J. Liver Physiology: Metabolism and Detoxification. in Pathobiology of Human Disease 1770–1782 (Elsevier, 2014).
Rogers, A. B. & Dintzis, R. Z. 13 - Liver and Gallbladder. in Comparative Anatomy and Histology (eds. Treuting, P. M. & Dintzis, S. M.) 193–201 (Academic Press, 2012).
Henley, K. S. Regulation of hepatic metabolism: Intra and intercellular compartmentation. By R. G. Thurman, F. C. Kauffman and K. Jungerman. 476 pp. New York: Plenum Press, 1986. $69.50. Hepatology7, 412–413 (1987).
Ekataksin W, Kaneda K. Liver microvascular architecture: an insight into the pathophysiology of portal hypertension. Semin. Liver Dis. 1999;19:359–382. PubMed
Lamers WH, et al. Hepatic enzymic zonation: a reevaluation of the concept of the liver acinus. Hepatology. 1989;10:72–76. PubMed
Vekemans K, Braet F. Structural and functional aspects of the liver and liver sinusoidal cells in relation to colon carcinoma metastasis. WJG. 2005;11:5095. PubMed PMC
Ben-Moshe S, Itzkovitz S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 2019;16:395–410. PubMed
Jungermann K. Zonation of metabolism and gene expression in liver. Histochem. Cell Biol. 1995;103:81–91. PubMed
Jungermann K, Katz N. Functional Hepatocellular Heterogeneity. Hepatology. 2007;2:385S–395S. PubMed
Jungermann K. Metabolic zonation of liver parenchyma. Semin. Liver Dis. 1988;8:329–341. PubMed
Gebhardt R. Liver zonation: Novel aspects of its regulation and its impact on homeostasis. WJG. 2014;20:8491. PubMed PMC
Halpern KB, et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 2017;542:352–356. PubMed PMC
Aizarani N, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572:199–204. PubMed PMC
Halpern KB, et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 2018;36:962–970. PubMed PMC
Braeuning A, et al. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006;273:5051–5061. PubMed
Saito K, Negishi M. & James Squires, E. Sexual dimorphisms in zonal gene expression in mouse liver. Biochemical Biophysical. Res. Commun. 2013;436:730–735. PubMed
Adam M, Potter AS, Potter SS. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development. 2017;144:3625–3632. PubMed PMC
Saviano, A., Henderson, N. C. & Baumert, T. F. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J. Hepatol.73, 1219–1230 (2020). PubMed PMC
van den Brink SC, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods. 2017;14:935–936. PubMed
Fiebig T, et al. Three-Dimensional In Vivo Imaging of the Murine Liver: A Micro-Computed Tomography-Based Anatomical Study. PLoS ONE. 2012;7:e31179. PubMed PMC
Sänger C, et al. Intrahepatic Vascular Anatomy in Rats and Mice—Variations and Surgical Implications. PLoS ONE. 2015;10:e0141798. PubMed PMC
Cox LA, et al. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale: Gene expression in the fetal liver: a cautionary tale. J. Physiol. 2006;572:59–66. PubMed PMC
Zhang J, Byrne CD. Differential hepatic lobar gene expression in offspring exposed to altered maternal dietary protein intake. Am. J. Physiol.-Gastrointest. Liver Physiol. 2000;278:G128–G136. PubMed
Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and Development of the Liver. Developmental Cell. 2010;18:175–189. PubMed
Zhai Y, et al. CXCL10 regulates liver innate immune response against ischemia and reperfusion injury. Hepatology. 2007;47:207–214. PubMed
Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu. Rev. Virol. 2019;6:567–584. PubMed
Li B, Zheng Y-W, Sano Y, Taniguchi H. Evidence for Mesenchymal−Epithelial Transition Associated with Mouse Hepatic Stem Cell Differentiation. PLoS ONE. 2011;6:e17092. PubMed PMC
Li, I. M. H., Horwell, A. L., Chu, G., de Crombrugghe, B. & Bou-Gharios, G. Characterization of Mesenchymal-Fibroblast Cells Using the Col1a2 Promoter/Enhancer. in Fibrosis (ed. Rittié, L.) 1627 139–161 (Springer New York, 2017). PubMed
Dobie R, et al. Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis. Cell Rep. 2019;29:1832–1847.e8. PubMed PMC
Lynch RW, et al. An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias. J. Leukoc. Biol. 2018;104:579–586. PubMed PMC
Zhang H, et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 2016;48:537–543. PubMed
Nonaka H, Tanaka M, Suzuki K, Miyajima A. Development of murine hepatic sinusoidal endothelial cells characterized by the expression of hyaluronan receptors. Dev. Dyn. 2007;236:2258–2267. PubMed
Preziosi M, Okabe H, Poddar M, Singh S, Monga SP. Endothelial Wnts regulate β‐catenin signaling in murine liver zonation and regeneration: A sequel to the Wnt–Wnt situation. Hepatol. Commun. 2018;2:845–860. PubMed PMC
Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 2001;276:19420–19430. PubMed
MacParland SA, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 2018;9:4383. PubMed PMC
Yang C-Y, et al. CLEC4F Is an Inducible C-Type Lectin in F4/80-Positive Cells and Is Involved in Alpha-Galactosylceramide Presentation in Liver. PLoS ONE. 2013;8:e65070. PubMed PMC
Scott CL, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 2016;7:10321. PubMed PMC
Kobold D, et al. Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J. Hepatol. 2002;36:607–613. PubMed
Antoniou A, et al. Intrahepatic Bile Ducts Develop According to a New Mode of Tubulogenesis Regulated by the Transcription Factor SOX9. Gastroenterology. 2009;136:2325–2333. PubMed PMC
Andersson A, et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 2020;3:565. PubMed PMC
Han X, et al. Mapping the Mouse. Cell Atlas Microwell-Seq. Cell. 2018;172:1091–1107.e17. PubMed
Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature.589, 131–136 (2020). PubMed PMC
Sandoval IV, Sols A. Gluconeogenesis from Serine by the Serine-Dehydratase-Dependent Pathway in Rat Liver. Eur. J. Biochem. 1974;43:609–616. PubMed
Guengerich FP. Cytochromes P450, Drugs, and Diseases. Mol. Interventions. 2003;3:194–204. PubMed
Nagata K, Martin BM, Gillette JR, Sasame HA. Isozymes of cytochrome P-450 that metabolize naphthalene in liver and lung of untreated mice. Drug Metab. Dispos. 1990;18:557–564. PubMed
Kang JS, et al. Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicol. Appl. Pharmacol. 2008;228:295–300. PubMed
Cheng X, et al. Glucagon contributes to liver zonation. Proc. Natl Acad. Sci. USA. 2018;115:E4111–E4119. PubMed PMC
Jungermann, K. & Keitzmann, T. Zonation of Parenchymal and Nonparenchymal Metabolism in Liver. Annu Rev Nutr. 16, 179–203 (1996). PubMed
Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 1992;53:275–354. PubMed
Brosnan ME, Brosnan JT. Histidine Metabolism and Function. J. Nutr. 2020;150:2570S–2575S. PubMed PMC
Chapman GB, Eagles DA. Ultrastructural features of Glisson’s capsule and the overlying mesothelium in rat, monkey and pike liver. Tissue Cell. 2007;39:343–351. PubMed
Ortiz C, et al. Molecular atlas of the adult mouse brain. Sci. Adv. 2020;6:eabb3446. PubMed PMC
Kubes P, Jenne C. Immune Responses in the Liver. Annu. Rev. Immunol. 2018;36:247–277. PubMed
Kietzmann T. Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol. 2017;11:622–630. PubMed PMC
McEnerney L, et al. Dual modulation of human hepatic zonation via canonical and non-canonical Wnt pathways. Exp. Mol. Med. 2017;49:e413–e413. PubMed PMC
Berndt, N. et al. Functional consequences of metabolic zonation in murine livers: New insights for an old story. Hepatology73, 795–810 (2020). PubMed
Stenger AM, et al. Expression of histone H3 cell cycle-related gene, Vimentin and MYC genes in pediatric brain tumors. A preliminary analysis showing the different malignant cell growth potential. Mol. Brain Res. 1992;13:273–275. PubMed
Leifeld L, et al. Anti-Apoptotic Function of Gelsolin in Fas Antibody-Induced Liver Failure in Vivo. Am. J. Pathol. 2006;168:778–785. PubMed PMC
Crawford LW, Foley JF, Elmore SA. Histology atlas of the developing mouse hepatobiliary system with emphasis on embryonic days 9.5-18.5. Toxicol. Pathol. 2010;38:872–906. PubMed PMC
Vickovic S, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods. 2019;16:987–990. PubMed PMC
Ståhl PL, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78. PubMed
Jemt A, et al. An automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries. Sci. Rep. 2016;6:37137. PubMed PMC
Lundin S, Stranneheim H, Pettersson E, Klevebring D, Lundeberg J. Increased Throughput by Parallelization of Library Preparation for Massive Sequencing. PLoS ONE. 2010;5:e10029. PubMed PMC
Wong K, Navarro JF, Bergenstråhle L, Ståhl PL, Lundeberg J. ST Spot Detector: a web-based application for automatic spot and tissue detection for spatial Transcriptomics image datasets. Bioinformatics. 2018;34:1966–1968. PubMed
Navarro JF, Sjöstrand J, Salmén F, Lundeberg J, Ståhl PL. ST Pipeline: an automated pipeline for spatial mapping of unique transcripts. Bioinformatics. 2017;33:2591–2593. PubMed
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29:15–21. PubMed PMC
Bergenstråhle J, Larsson L, Lundeberg J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics. 2020;21:482. PubMed PMC
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296. PubMed PMC
Stuart T, et al. Comprehensive Integration of Single- Cell Data. Cell. 2019;177:1888–1902.e21. PubMed PMC
Hildebrandt, F. & Andersson, A., ST-mLiver. almaan/ST-mLiver: natcoms. 10.5281/zenodo.55176001 (2021).
Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35:W193–W200. PubMed PMC
Hildebrandt, F. Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the liver. 10.5281/zenodo.5595907 (2020). PubMed PMC