Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver

. 2021 Dec 02 ; 12 (1) : 7046. [epub] 20211202

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34857782
Odkazy

PubMed 34857782
PubMed Central PMC8640072
DOI 10.1038/s41467-021-27354-w
PII: 10.1038/s41467-021-27354-w
Knihovny.cz E-zdroje

Reconstruction of heterogeneity through single cell transcriptional profiling has greatly advanced our understanding of the spatial liver transcriptome in recent years. However, global transcriptional differences across lobular units remain elusive in physical space. Here, we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined by lobular zonation. By introducing novel computational approaches, we enable transcriptional gradient measurements between tissue structures, including several lobules in a variety of orientations. Further, our data suggests the presence of previously transcriptionally uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity of the organ. This study demonstrates how comprehensive spatial transcriptomic technologies can be used to delineate extensive spatial gene expression patterns in the liver, indicating its future impact for studies of liver function, development and regeneration as well as its potential in pre-clinical and clinical pathology.

Zobrazit více v PubMed

Chiang, J. Liver Physiology: Metabolism and Detoxification. in Pathobiology of Human Disease 1770–1782 (Elsevier, 2014).

Rogers, A. B. & Dintzis, R. Z. 13 - Liver and Gallbladder. in Comparative Anatomy and Histology (eds. Treuting, P. M. & Dintzis, S. M.) 193–201 (Academic Press, 2012).

Henley, K. S. Regulation of hepatic metabolism: Intra and intercellular compartmentation. By R. G. Thurman, F. C. Kauffman and K. Jungerman. 476 pp. New York: Plenum Press, 1986. $69.50. Hepatology7, 412–413 (1987).

Ekataksin W, Kaneda K. Liver microvascular architecture: an insight into the pathophysiology of portal hypertension. Semin. Liver Dis. 1999;19:359–382. PubMed

Lamers WH, et al. Hepatic enzymic zonation: a reevaluation of the concept of the liver acinus. Hepatology. 1989;10:72–76. PubMed

Vekemans K, Braet F. Structural and functional aspects of the liver and liver sinusoidal cells in relation to colon carcinoma metastasis. WJG. 2005;11:5095. PubMed PMC

Ben-Moshe S, Itzkovitz S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 2019;16:395–410. PubMed

Jungermann K. Zonation of metabolism and gene expression in liver. Histochem. Cell Biol. 1995;103:81–91. PubMed

Jungermann K, Katz N. Functional Hepatocellular Heterogeneity. Hepatology. 2007;2:385S–395S. PubMed

Jungermann K. Metabolic zonation of liver parenchyma. Semin. Liver Dis. 1988;8:329–341. PubMed

Gebhardt R. Liver zonation: Novel aspects of its regulation and its impact on homeostasis. WJG. 2014;20:8491. PubMed PMC

Halpern KB, et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 2017;542:352–356. PubMed PMC

Aizarani N, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572:199–204. PubMed PMC

Halpern KB, et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 2018;36:962–970. PubMed PMC

Braeuning A, et al. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006;273:5051–5061. PubMed

Saito K, Negishi M. & James Squires, E. Sexual dimorphisms in zonal gene expression in mouse liver. Biochemical Biophysical. Res. Commun. 2013;436:730–735. PubMed

Adam M, Potter AS, Potter SS. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development. 2017;144:3625–3632. PubMed PMC

Saviano, A., Henderson, N. C. & Baumert, T. F. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J. Hepatol.73, 1219–1230 (2020). PubMed PMC

van den Brink SC, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods. 2017;14:935–936. PubMed

Fiebig T, et al. Three-Dimensional In Vivo Imaging of the Murine Liver: A Micro-Computed Tomography-Based Anatomical Study. PLoS ONE. 2012;7:e31179. PubMed PMC

Sänger C, et al. Intrahepatic Vascular Anatomy in Rats and Mice—Variations and Surgical Implications. PLoS ONE. 2015;10:e0141798. PubMed PMC

Cox LA, et al. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale: Gene expression in the fetal liver: a cautionary tale. J. Physiol. 2006;572:59–66. PubMed PMC

Zhang J, Byrne CD. Differential hepatic lobar gene expression in offspring exposed to altered maternal dietary protein intake. Am. J. Physiol.-Gastrointest. Liver Physiol. 2000;278:G128–G136. PubMed

Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and Development of the Liver. Developmental Cell. 2010;18:175–189. PubMed

Zhai Y, et al. CXCL10 regulates liver innate immune response against ischemia and reperfusion injury. Hepatology. 2007;47:207–214. PubMed

Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu. Rev. Virol. 2019;6:567–584. PubMed

Li B, Zheng Y-W, Sano Y, Taniguchi H. Evidence for Mesenchymal−Epithelial Transition Associated with Mouse Hepatic Stem Cell Differentiation. PLoS ONE. 2011;6:e17092. PubMed PMC

Li, I. M. H., Horwell, A. L., Chu, G., de Crombrugghe, B. & Bou-Gharios, G. Characterization of Mesenchymal-Fibroblast Cells Using the Col1a2 Promoter/Enhancer. in Fibrosis (ed. Rittié, L.) 1627 139–161 (Springer New York, 2017). PubMed

Dobie R, et al. Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis. Cell Rep. 2019;29:1832–1847.e8. PubMed PMC

Lynch RW, et al. An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias. J. Leukoc. Biol. 2018;104:579–586. PubMed PMC

Zhang H, et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 2016;48:537–543. PubMed

Nonaka H, Tanaka M, Suzuki K, Miyajima A. Development of murine hepatic sinusoidal endothelial cells characterized by the expression of hyaluronan receptors. Dev. Dyn. 2007;236:2258–2267. PubMed

Preziosi M, Okabe H, Poddar M, Singh S, Monga SP. Endothelial Wnts regulate β‐catenin signaling in murine liver zonation and regeneration: A sequel to the Wnt–Wnt situation. Hepatol. Commun. 2018;2:845–860. PubMed PMC

Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 2001;276:19420–19430. PubMed

MacParland SA, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 2018;9:4383. PubMed PMC

Yang C-Y, et al. CLEC4F Is an Inducible C-Type Lectin in F4/80-Positive Cells and Is Involved in Alpha-Galactosylceramide Presentation in Liver. PLoS ONE. 2013;8:e65070. PubMed PMC

Scott CL, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 2016;7:10321. PubMed PMC

Kobold D, et al. Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J. Hepatol. 2002;36:607–613. PubMed

Antoniou A, et al. Intrahepatic Bile Ducts Develop According to a New Mode of Tubulogenesis Regulated by the Transcription Factor SOX9. Gastroenterology. 2009;136:2325–2333. PubMed PMC

Andersson A, et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 2020;3:565. PubMed PMC

Han X, et al. Mapping the Mouse. Cell Atlas Microwell-Seq. Cell. 2018;172:1091–1107.e17. PubMed

Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature.589, 131–136 (2020). PubMed PMC

Sandoval IV, Sols A. Gluconeogenesis from Serine by the Serine-Dehydratase-Dependent Pathway in Rat Liver. Eur. J. Biochem. 1974;43:609–616. PubMed

Guengerich FP. Cytochromes P450, Drugs, and Diseases. Mol. Interventions. 2003;3:194–204. PubMed

Nagata K, Martin BM, Gillette JR, Sasame HA. Isozymes of cytochrome P-450 that metabolize naphthalene in liver and lung of untreated mice. Drug Metab. Dispos. 1990;18:557–564. PubMed

Kang JS, et al. Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicol. Appl. Pharmacol. 2008;228:295–300. PubMed

Cheng X, et al. Glucagon contributes to liver zonation. Proc. Natl Acad. Sci. USA. 2018;115:E4111–E4119. PubMed PMC

Jungermann, K. & Keitzmann, T. Zonation of Parenchymal and Nonparenchymal Metabolism in Liver. Annu Rev Nutr. 16, 179–203 (1996). PubMed

Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 1992;53:275–354. PubMed

Brosnan ME, Brosnan JT. Histidine Metabolism and Function. J. Nutr. 2020;150:2570S–2575S. PubMed PMC

Chapman GB, Eagles DA. Ultrastructural features of Glisson’s capsule and the overlying mesothelium in rat, monkey and pike liver. Tissue Cell. 2007;39:343–351. PubMed

Ortiz C, et al. Molecular atlas of the adult mouse brain. Sci. Adv. 2020;6:eabb3446. PubMed PMC

Kubes P, Jenne C. Immune Responses in the Liver. Annu. Rev. Immunol. 2018;36:247–277. PubMed

Kietzmann T. Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol. 2017;11:622–630. PubMed PMC

McEnerney L, et al. Dual modulation of human hepatic zonation via canonical and non-canonical Wnt pathways. Exp. Mol. Med. 2017;49:e413–e413. PubMed PMC

Berndt, N. et al. Functional consequences of metabolic zonation in murine livers: New insights for an old story. Hepatology73, 795–810 (2020). PubMed

Stenger AM, et al. Expression of histone H3 cell cycle-related gene, Vimentin and MYC genes in pediatric brain tumors. A preliminary analysis showing the different malignant cell growth potential. Mol. Brain Res. 1992;13:273–275. PubMed

Leifeld L, et al. Anti-Apoptotic Function of Gelsolin in Fas Antibody-Induced Liver Failure in Vivo. Am. J. Pathol. 2006;168:778–785. PubMed PMC

Crawford LW, Foley JF, Elmore SA. Histology atlas of the developing mouse hepatobiliary system with emphasis on embryonic days 9.5-18.5. Toxicol. Pathol. 2010;38:872–906. PubMed PMC

Vickovic S, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods. 2019;16:987–990. PubMed PMC

Ståhl PL, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78. PubMed

Jemt A, et al. An automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries. Sci. Rep. 2016;6:37137. PubMed PMC

Lundin S, Stranneheim H, Pettersson E, Klevebring D, Lundeberg J. Increased Throughput by Parallelization of Library Preparation for Massive Sequencing. PLoS ONE. 2010;5:e10029. PubMed PMC

Wong K, Navarro JF, Bergenstråhle L, Ståhl PL, Lundeberg J. ST Spot Detector: a web-based application for automatic spot and tissue detection for spatial Transcriptomics image datasets. Bioinformatics. 2018;34:1966–1968. PubMed

Navarro JF, Sjöstrand J, Salmén F, Lundeberg J, Ståhl PL. ST Pipeline: an automated pipeline for spatial mapping of unique transcripts. Bioinformatics. 2017;33:2591–2593. PubMed

Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29:15–21. PubMed PMC

Bergenstråhle J, Larsson L, Lundeberg J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics. 2020;21:482. PubMed PMC

Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296. PubMed PMC

Stuart T, et al. Comprehensive Integration of Single- Cell Data. Cell. 2019;177:1888–1902.e21. PubMed PMC

Hildebrandt, F. & Andersson, A., ST-mLiver. almaan/ST-mLiver: natcoms. 10.5281/zenodo.55176001 (2021).

Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35:W193–W200. PubMed PMC

Hildebrandt, F. Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the liver. 10.5281/zenodo.5595907 (2020). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...