Erythrocytes of the common carp are immune sentinels that sense pathogen molecular patterns, engulf particles and secrete pro-inflammatory cytokines against bacterial infection
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38947329
PubMed Central
PMC11211254
DOI
10.3389/fimmu.2024.1407237
Knihovny.cz E-zdroje
- Klíčová slova
- Aeromonas hydrophila (A. hydrophila), Cyprinus carpio, bacteria, cytokines, engulfment, inflammation, red blood cell (RBC), teleost fish,
- MeSH
- Aeromonas hydrophila * imunologie MeSH
- cytokiny * metabolismus imunologie MeSH
- erytrocyty * imunologie metabolismus MeSH
- fagocytóza imunologie MeSH
- gramnegativní bakteriální infekce * imunologie MeSH
- kapři * imunologie mikrobiologie MeSH
- nemoci ryb * imunologie mikrobiologie MeSH
- PAMP struktury imunologie MeSH
- přirozená imunita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny * MeSH
- PAMP struktury MeSH
INTRODUCTION: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. METHODS: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. RESULTS: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. DISCUSSION: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.
Doctoral School of Exact and Natural Sciences Jagiellonian University Krakow Poland
Faculty of Science University of South Bohemia České Budějovice Czechia
Fish Health Division Veterinary University of Vienna Vienna Austria
Zobrazit více v PubMed
Nelson Jr, Robert A. The immune-adherence phenomenon: an immunologically specific reaction between microorganisms and erythrocytes leading to enhanced phagocytosis. Science. (1953) 118:733–7. doi: 10.1126/science.118.3077.733 PubMed DOI
Hess C, Schifferli JA. Immune adherence revisited: novel players in an old game. Physiology. (2003) 18:104–8. doi: 10.1152/nips.01425.2002 PubMed DOI
Ortega-Villaizan M del M, Coll J, Rimstad E. Editorial: The role of red blood cells in the immune response of fish. Front Immunol. (2022) 13. doi: 10.3389/fimmu.2022.1005546 PubMed DOI PMC
Lam LKM, Murphy S, Kokkinaki D, Venosa A, Sherrill-Mix S, Casu C, et al. . DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med. (2021) 13:eabj1008. doi: 10.1126/scitranslmed.abj1008 PubMed DOI PMC
Ren Y, Yan C, Yang H. Erythrocytes: Member of the immune system that should not be ignored. Crit Rev Oncol Hematol. (2023) 187:104039. doi: 10.1016/j.critrevonc.2023.104039 PubMed DOI
Darbonne WC, Rice GC, Mohler MA, Apple T, Hébert CA, Valente AJ, et al. . Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J Clin Invest. (1991) 88:1362–9. doi: 10.1172/JCI115442 PubMed DOI PMC
Hotz MJ, Qing D, Shashaty MGS, Zhang P, Faust H, Sondheimer N, et al. . Red blood cells homeostatically bind mitochondrial DNA through TLR9 to maintain quiescence and to prevent lung injury. Am J Respir Crit Care Med. (2018) 197:470–80. doi: 10.1164/rccm.201706-1161OC PubMed DOI PMC
Minasyan HA. Erythrocyte and leukocyte: two partners in bacteria killing. Int Rev Immunol. (2014) 33:490–7. doi: 10.3109/08830185.2014.956359 PubMed DOI
Anderson HL, Brodsky IE, Mangalmurti NS. The evolving erythrocyte: red blood cells as modulators of innate immunity. J Immunol. (2018) 201:1343–51. doi: 10.4049/jimmunol.1800565 PubMed DOI PMC
Chico V, Puente-Marin S, Nombela I, Ciordia S, Mena M, Carracedo B, et al. . Shape-shifted red blood cells: A novel red blood cell stage? Cells. (2018) 7:31. doi: 10.3390/cells7040031 PubMed DOI PMC
Morera D, Roher N, Ribas L, Balasch JC, Doñate C, Callol A, et al. . RNA-seq reveals an integrated immune response in nucleated erythrocytes. PloS One. (2011) 6:e26998. doi: 10.1371/journal.pone.0026998 PubMed DOI PMC
St Paul M, Paolucci S, Barjesteh N, Wood RD, Sharif S. Chicken erythrocytes respond to Toll-like receptor ligands by up-regulating cytokine transcripts. Res Vet Sci. (2013) 95:87–91. doi: 10.1016/j.rvsc.2013.01.024 PubMed DOI
Chico V, Nombela I, Puente-Marín S, del Mar Ortega-Villaizan M. Nucleated red blood cells contribute to the host immune response against pathogens. In: Immune Response Activation and Immunomodulation. IntechOpen; (2019). doi: 10.5772/intechopen.80545 DOI
Xu Z, Yang Y, Sarath Babu V, Chen J, Li F, Yang M, et al. . The antibacterial activity of erythrocytes from Clarias fuscus associated with phagocytosis and respiratory burst generation. Fish Shellfish Immunol. (2021) 119:96–104. doi: 10.1016/j.fsi.2021.10.001 PubMed DOI
Yang M, Lu Z, Li F, Shi F, Zhan F, Zhao L, et al. . Escherichia coli induced ferroptosis in red blood cells of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. (2021) 112:159–67. doi: 10.1016/j.fsi.2020.09.036 PubMed DOI
Davies AJ, Johnston MRL. The biology of some intraerythrocytic parasites of fishes, amphibia and reptiles. Adv Parasitol. (2000) 45:1–107. doi: 10.1016/S0065-308X(00)45003-7 PubMed DOI
Nombela I, Ortega-Villaizan M del M. Nucleated red blood cells: Immune cell mediators of the antiviral response. PloS Pathog. (2018) 14:e1006910. doi: 10.1371/journal.ppat.1006910 PubMed DOI PMC
Tao J, Tu C, Xu Z, Bai Y, Chen B, Yang S, et al. . The infection of Aeromonas hydrophila activated Multiple programmed cell death pathways in red blood cells of Clarias fuscus. Fish Shellfish Immunol. (2024) 145:109315. doi: 10.1016/j.fsi.2023.109315 PubMed DOI
Korytář T, Chan JTH, Vancová M, Holzer AS. Blood feast: Exploring the erythrocyte-feeding behaviour of the myxozoan Sphaerospora molnari. Parasite Immunol. (2020) 42:e12683. doi: 10.1111/pim.12683 PubMed DOI PMC
Finstad Ø, Dahle M, Lindholm T, Nyman I, Løvoll M, Wallace C, et al. . Piscine orthoreovirus (PRV) infects Atlantic salmon erythrocytes. Vet Res. (2014) 45:35. doi: 10.1186/1297-9716-45-35 PubMed DOI PMC
Workenhe ST, Kibenge MJ, Wright GM, Wadowska DW, Groman DB, Kibenge FS. Infectious salmon anaemia virus replication and induction of alpha interferon in Atlantic salmon erythrocytes. Virol J. (2008) 5:36. doi: 10.1186/1743-422X-5-36 PubMed DOI PMC
Pereiro P, Romero A, Díaz-Rosales P, Estepa A, Figueras A, Novoa B. Nucleated teleost erythrocytes play an Nk-lysin- and autophagy-dependent role in antiviral immunity. Front Immunol. (2017) 8:8. doi: 10.3389/fimmu.2017.01458 PubMed DOI PMC
Nombela I, Carrion A, Puente-Marin S, Chico V, Mercado L, Perez L, et al. . Infectious pancreatic necrosis virus triggers antiviral immune response in rainbow trout red blood cells, despite not being infective. F1000Res. (2017) 6:1968. doi: 10.12688/f1000research PubMed DOI PMC
Rodríguez Iván, Novoa B, Figueras A. Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish shellfish Immunol. (2008) 25:239–49. doi: 10.1016/j.fsi.2008.05.002 PubMed DOI
Yang S, Li Q, Mu Y, Ao J, Chen X. Functional activities of interferon gamma in large yellow croaker Larimichthys crocea. Fish Shellfish Immunol. (2017) 70:545–52. doi: 10.1016/j.fsi.2017.09.051 PubMed DOI
Wiegertjes GF, Wentzel AS, Spaink HP, Elks PM, Fink IR. Polarization of immune responses in fish: The “macrophages first” point of view. Mol Immunol. (2016) 69:146–56. doi: 10.1016/j.molimm.2015.09.026 PubMed DOI
Arts JAJ, Tijhaar EJ, Chadzinska M, Savelkoul HFJ, Verburg-van Kemenade BML. Functional analysis of carp interferon-gamma: evolutionary conservation of classical phagocyte activation. Fish Shellfish Immunol. (2010) 29:793–802. doi: 10.1016/j.fsi.2010.07.010 PubMed DOI
Fu J, Yi Z, Cui H, Song C, Yu M, Liu Y. Intein-mediated expression and purification of common carp IFN-γ and its protective effect against spring viremia of carp virus. Fish Shellfish Immunol. (2019) 88:403–6. doi: 10.1016/j.fsi.2019.03.022 PubMed DOI
Montero R, Chan JTH, Köllner B, Kuchta R, Vysloužil J, Podhorec P, et al. . The acute immune responses of the common carp Cyprinus carpio to PLGA microparticles-the interactions of a teleost fish with a foreign material. Biomolecules. (2022) 12:326. doi: 10.3390/biom12020326 PubMed DOI PMC
Costa MM, Maehr T, Diaz-Rosales P, Secombes CJ, Wang T. Bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-6: effects on macrophage growth and antimicrobial peptide gene expression. Mol Immunol. (2011) 48:1903–16. doi: 10.1016/j.molimm.2011.05.027 PubMed DOI
Grayfer L, Belosevic M. Molecular characterization, expression and functional analysis of goldfish (Carassius aurutus L.) interferon gamma. Dev Comp Immunol. (2009) 33:235–46. doi: 10.1016/j.dci.2008.09.001 PubMed DOI
Puente-Marin S, Thwaite R, Mercado L, Coll J, Roher N, Ortega-Villaizan MDM. Fish red blood cells modulate immune genes in response to bacterial inclusion bodies made of TNFα and a G-VHSV fragment. Front Immunol. (2019) 10. doi: 10.3389/fimmu.2019.01055 PubMed DOI PMC
Aderem A. Phagocytosis and the inflammatory response. J Infect Dis. (2003) 187:S340–5. doi: 10.1086/374747 PubMed DOI
Frøystad MK, Rode M, Berg T, Gjøen T. A role for scavenger receptors in phagocytosis of protein-coated particles in rainbow trout head kidney macrophages. Dev Comp Immunol. (1998) 22:533–49. doi: 10.1016/s0145-305x(98)00032-9 PubMed DOI
Chernyavskikh SD, Fedorova MZ, Van Thanh V, Quyet DH. Reorganization of actin cytoskeleton of nuclear erythrocytes and leukocytes in fish, frogs, and birds during migration. Cell Tissue Biol. (2012) 6:348–52. doi: 10.1134/S1990519X12040025 PubMed DOI
Qin Z, Vijayaraman SB, Lin H, Dai Y, Zhao L, Xie J, et al. . Antibacterial activity of erythrocyte from grass carp (Ctenopharyngodon idella) is associated with phagocytosis and reactive oxygen species generation. Fish Shellfish Immunol. (2019) 92:331–40. doi: 10.1016/j.fsi.2019.06.008 PubMed DOI
Bahl N, Du R, Winarsih I, Ho B, Tucker-Kellogg L, Tidor B, et al. . Delineation of lipopolysaccharide (LPS)-binding sites on hemoglobin. J Biol Chem. (2011) 286:37793–803. doi: 10.1074/jbc.M111.245472 PubMed DOI PMC
Nombela I, Requena-Platek R, Morales-Lange B, Chico V, Puente-Marin S, Ciordia S, et al. . Rainbow trout red blood cells exposed to viral hemorrhagic septicemia virus up-regulate antigen-processing mechanisms and MHC I&II, CD86, and CD83 antigen-presenting cell markers. Cells. (2019) 8:386. doi: 10.3390/cells8050386 PubMed DOI PMC
Jeong JM, An CM, Kim MC, Park CI. Cooperation of erythrocytes with leukocytes in immune response of a teleost Oplegnathus fasciatus. Genes Genomics. (2016) 38:931–8. doi: 10.1007/s13258-016-0437-z DOI
Lin X, Wen Z, Xu J. Tissue-resident macrophages: from zebrafish to mouse. Blood Sci. (2019) 1:57–60. doi: 10.1097/BS9.0000000000000013 PubMed DOI PMC
He S, Chen J, Jiang Y, Wu Y, Zhu L, Jin W, et al. . Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells. Elife. (2018) 7:e36131. doi: 10.7554/eLife.36131 PubMed DOI PMC
Mathiessen H, Kjeldgaard-Nintemann S, Gonzalez CMF, Henard C, Reimer JA, Gelskov SV, et al. . Acute immune responses in zebrafish and evasive behavior of a parasite - who is winning? Front Cell Infect Microbiol. (2023) 13:1190931. doi: 10.3389/fcimb.2023.1190931 PubMed DOI PMC
Barberà-Cremades M, Gómez AI, Baroja-Mazo A, Martínez-Alarcón L, Martínez CM, de Torre-Minguela C, et al. . P2X7 receptor induces tumor necrosis factor-α Converting enzyme activation and release to boost TNF-α Production. Front Immunol. (2017) 8. doi: 10.3389/fimmu.2017.00862 PubMed DOI PMC
Gong Y, Feng S, Li S, Zhang Y, Zhao Z, Hu M, et al. . Genome-wide characterization of Toll-like receptor gene family in common carp (Cyprinus carpio) and their involvement in host immune response to Aeromonas hydrophila infection. Comp Biochem Physiol Part D Genomics Proteomics. (2017) 24:89–98. doi: 10.1016/j.cbd.2017.08.003 PubMed DOI
Srivastava N, Shelly A, Kumar M, Pant A, Das B, Majumdar T, et al. . Aeromonas hydrophila utilizes TLR4 topology for synchronous activation of MyD88 and TRIF to orchestrate anti-inflammatory responses in zebrafish. Cell Death Discovery. (2017) 3:17067. doi: 10.1038/cddiscovery.2017.67 PubMed DOI PMC
Sepulcre MP, Alcaraz-Pérez F, López-Muñoz A, Roca FJ, Meseguer J, Cayuela ML, et al. . Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-kappaB activation. J Immunol. (2009) 182:1836–45. doi: 10.4049/jimmunol.0801755 PubMed DOI
Loes AN, Hinman MN, Farnsworth DR, Miller AC, Guillemin K, Harms MJ. Identification and characterization of Zebrafish Tlr4 coreceptor Md-2. J Immunol. (2021) 206:1046–57. doi: 10.4049/jimmunol.1901288 PubMed DOI PMC
Weber C, Müller C, Podszuweit A, Montino C, Vollmer J, Forsbach A. Toll-like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR-mediated effects). Immunology. (2012) 136:64–77. doi: 10.1111/j.1365-2567.2012.03559.x PubMed DOI PMC
Uma A, Rebecca G, Saravanabava KK. Expression of Toll-like receptor9 (TLR9) in zebra fish (Danio rerio) experimentally exposed to Aeromonas hydropila. Int J Pharma Bio Sci. (2012) 3:520–6.
Roca FJ, Mulero I, López-Muñoz A, Sepulcre MP, Renshaw SA, Meseguer J, et al. . Evolution of the inflammatory response in vertebrates: fish TNF-alpha is a powerful activator of endothelial cells but hardly activates phagocytes. J Immunol. (2008) 181:5071–81. doi: 10.4049/jimmunol.181.7.5071 PubMed DOI
Shen Y, Wang D, Zhao J, Chen X. Fish red blood cells express immune genes and responses. Aquac Fish. (2018) 3:14–21. doi: 10.1016/j.aaf.2018.01.001 DOI
Holmgren AM, McConkey CA, Shin S. Outrunning the Red Queen: bystander activation as a means of outpacing innate immune subversion by intracellular pathogens. Cell Mol Immunol. (2017) 14:14–21. doi: 10.1038/cmi.2016.36 PubMed DOI PMC
Fahey E, Doyle SL. IL-1 family cytokine regulation of vascular permeability and angiogenesis. Front Immunol. (2019) 10:1426. doi: 10.3389/fimmu.2019.01426 PubMed DOI PMC
Dahle MK, Wessel Ø, Timmerhaus G, Nyman IB, Jørgensen SM, Rimstad E, et al. . Transcriptome analyses of Atlantic salmon (Salmo salar L.) erythrocytes infected with piscine orthoreovirus (PRV). Fish Shellfish Immunol. (2015) 45:780–90. doi: 10.1016/j.fsi.2015.05.049 PubMed DOI
Nielsen M, Høi L, Schmidt A, Qian D, Shimada T, Shen J, et al. . Is Aeromonas hydrophila the dominant motile Aeromonas species that causes disease outbreaks in aquaculture production in the Zhejiang Province of China? Dis Aquat Organ. (2001) 46:23–9. doi: 10.3354/dao046023 PubMed DOI
MacCarthy EM, Burns I, Irnazarow I, Polwart A, Greenhough TJ, Shrive AK, et al. . Serum CRP-like protein profile in common carp Cyprinus carpio challenged with Aeromonas hydrophila and Escherichia coli lipopolysaccharide. Dev Comp Immunol. (2008) 32:1281–9. doi: 10.1016/j.dci.2008.04.004 PubMed DOI
Szczygieł J, Kamińska-Gibas T, Petit J, Jurecka P, Wiegertjes G, Irnazarow I. Re-evaluation of common carp (Cyprinus carpio L.) housekeeping genes for gene expression studies – considering duplicated genes. Fish Shellfish Immunol. (2021) 115:58–69. doi: 10.1016/j.fsi.2021.05.013 PubMed DOI
Falco A, Frost P, Miest J, Pionnier N, Irnazarow I, Hoole D. Reduced inflammatory response to Aeromonas salmonicida infection in common carp (Cyprinus carpio L.) fed with β-glucan supplements. Fish Shellfish Immunol. (2012) 32:1051–7. doi: 10.1016/j.fsi.2012.02.028 PubMed DOI
Maciuszek M, Pijanowski L, Pekala-Safinska A, van Kemenade BMLV, Chadzinska M. 17β-Estradiol affects the innate immune response in common carp. Fish Physiol Biochem. (2020) 46:1775–94. doi: 10.1007/s10695-020-00827-3 PubMed DOI PMC
Ai W, Li H, Song N, Li L, Chen H. Optimal method to stimulate cytokine production and its use in immunotoxicity assessment. Int J Environ Res Public Health. (2013) 10:3834–42. doi: 10.3390/ijerph10093834 PubMed DOI PMC
Pillich H, Loose M, Zimmer KP, Chakraborty T. Diverse roles of endoplasmic reticulum stress sensors in bacterial infection. Mol Cell Pediatr. (2016) 3:9. doi: 10.1186/s40348-016-0037-7 PubMed DOI PMC
Morel E, Herranz-Jusdado JG, Simón R, Abós B, Perdiguero P, Martín-Martín A, et al. . Endoplasmic reticulum expansion throughout the differentiation of teleost B cells to plasmablasts. iScience. (2023) 26:105854. doi: 10.1016/j.isci.2022.105854 PubMed DOI PMC
Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. Microscopy image browser: A platform for segmentation and analysis of multidimensional datasets. PLoS Biol. (2016) 14:e1002340. doi: 10.1371/journal.pbio.1002340 PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. (2001) 29:45e–45. doi: 10.1093/nar/29.9.e45 PubMed DOI PMC