Advantages of stereolithographic 3D printing in the fabrication of the Affiblot device for dot-blot assays
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/ 16_026/0008446
European Regional Development Fund, Singing Plant
CZ.02.1.01/0.0/0.0/17_048/ 0007421
OP RDE, Strengthening interdisciplinary cooperation in research of nanomaterials and their effects on living organisms
RVO 68081715
Ústav analytické chemie, Akademie Věd České Republiky
PubMed
38954238
PubMed Central
PMC11219379
DOI
10.1007/s00604-024-06512-z
PII: 10.1007/s00604-024-06512-z
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, Antibody, Dot-blot, Microfluidics, Prototyping,
- MeSH
- 3D tisk * MeSH
- laboratoř na čipu MeSH
- lidé MeSH
- mikrofluidní analytické techniky přístrojové vybavení metody MeSH
- stereolitografie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In stereolithographic (SLA) 3D printing, objects are constructed by exposing layers of photocurable resin to UV light. It is a highly user-friendly fabrication method that opens a possibility for technology sharing through CAD file online libraries. Here, we present a prototyping procedure of a microfluidics-enhanced dot-blot device (Affiblot) designed for simple and inexpensive screening of affinity molecule characteristics (antibodies, oligonucleotides, cell receptors, etc.). The incorporation of microfluidic features makes sample processing user-friendly, less time-consuming, and less laborious, all performed completely on-device, distinguishing it from other dot-blot devices. Initially, the Affiblot device was fabricated using CNC machining, which required significant investment in manual post-processing and resulted in low reproducibility. Utilization of SLA 3D printing reduced the amount of manual post-processing, which significantly streamlined the prototyping process. Moreover, it enabled the fabrication of previously impossible features, including internal fluidic channels. While 3D printing of sub-millimeter microchannels usually requires custom-built printers, we were able to fabricate microfluidic features on a readily available commercial printer. Open microchannels in the size range 200-300 μm could be fabricated with reliable repeatability and sealed with a replaceable foil. Economic aspects of device fabrication are also discussed.
Zobrazit více v PubMed
Couchman JR (2009) Commercial antibodies: the good, bad, and really ugly - John R. Couchman. J Histochem Cytochem 57(2009):7–8. 10.1369/jhc.2008.952820 10.1369/jhc.2008.952820 PubMed DOI PMC
Howat WJ, Lewis A, Jones P, Kampf C, Pontén F, van der Loos CM, Gray N, Womack C, Warford A (2014) Antibody validation of immunohistochemistry for biomarker discovery: recommendations of a consortium of academic and pharmaceutical based histopathology researchers. Methods 70:34–38. 10.1016/j.ymeth.2014.01.018 10.1016/j.ymeth.2014.01.018 PubMed DOI PMC
Baker M (2015) Reproducibility crisis: blame it on the antibodies. Nature News 521:274. 10.1038/521274a10.1038/521274a PubMed DOI
Bradbury A, Plückthun A (2015) Reproducibility: standardize antibodies used in research. Nature News 518:27. 10.1038/518027a10.1038/518027a PubMed DOI
O’Kennedy R, Fitzgerald S, Murphy C (2017) Don’t blame it all on antibodies – the need for exhaustive characterisation, appropriate handling, and addressing the issues that affect specificity. TrAC Trends Anal Chem 89:53–59. 10.1016/j.trac.2017.01.00910.1016/j.trac.2017.01.009 DOI
Goodman SL (2018) The antibody horror show: an introductory guide for the perplexed. New Biotechnol 45:9–13. 10.1016/j.nbt.2018.01.00610.1016/j.nbt.2018.01.006 PubMed DOI
H.-F. Li, Optimal validation of accuracy in antibody assays and reasonable definition of antibody positive/negative subgroups in neuroimmune diseases: a narrative review, Annals of Translational Medicine 11 (2023) 280–280. 10.21037/atm-21-2384. PubMed PMC
Ayoubi R, Ryan J, Biddle MS, Alshafie W, Fotouhi M, Bolivar SG, Ruiz Moleon V, Eckmann P, Worrall D, McDowell I, Southern K, Reintsch W, Durcan TM, Brown C, Bandrowski A, Virk H, Edwards AM, McPherson P, Laflamme C (2023) Scaling of an antibody validation procedure enables quantification of antibody performance in major research applications. eLife 12:RP91645. 10.7554/eLife.91645 10.7554/eLife.91645 PubMed DOI PMC
Myler H, Pedras-Vasconcelos J, Lester T, Civoli F, Xu W, Wu B, Vainshtein I, Luo L, Hassanein M, Liu S, Ramaswamy SS, Mora J, Pennucci J, McCush F, Lavelle A, Jani D, Ambakhutwala A, Baltrukonis D, Barker B et al (2023) Neutralizing antibody validation testing and reporting harmonization. AAPS J 25:69. 10.1208/s12248-023-00830-5 10.1208/s12248-023-00830-5 PubMed DOI
Svobodova Z, Novotny J, Ospalkova B, Slovakova M, Bilkova Z, Foret F (2021) Affiblot: a dot blot-based screening device for selection of reliable antibodies. Anal Methods 13:3874–3884. 10.1039/D1AY00955A 10.1039/D1AY00955A PubMed DOI
Walsh DI, Kong DS, Murthy SK, Carr PA (2017) Enabling microfluidics: from clean rooms to makerspaces. Trends Biotechnol 35:383–392. 10.1016/j.tibtech.2017.01.001 10.1016/j.tibtech.2017.01.001 PubMed DOI PMC
Ho CMB, Ng SH, Li KHH, Yoon Y-J (2015) 3D printed microfluidics for biological applications. Lab Chip 15:3627–3637. 10.1039/C5LC00685F 10.1039/C5LC00685F PubMed DOI
Dixit CK, Kadimisetty K, Rusling J (2018) 3D-printed miniaturized fluidic tools in chemistry and biology. TrAC Trends Anal Chem 106:37–52. 10.1016/j.trac.2018.06.01310.1016/j.trac.2018.06.013 PubMed DOI PMC
McDonald JC, Chabinyc ML, Metallo SJ, Anderson JR, Stroock AD, Whitesides GM (2002) Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal Chem 74:1537–1545. 10.1021/ac010938q 10.1021/ac010938q PubMed DOI
Maher PS, Keatch RP, Donnelly K (2010) Characterisation of rapid prototyping techniques for studies in cell behaviour. Rapid Prototyp J 16:116–123. 10.1108/1355254101102583410.1108/13552541011025834 DOI
Moore JL, McCuiston A, Mittendorf I, Ottway R, Johnson RD (2011) Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing. Microfluid Nanofluid 10:877–888. 10.1007/s10404-010-0721-110.1007/s10404-010-0721-1 DOI
Anderson KB, Lockwood SY, Martin RS, Spence DM (2013) A 3D printed fluidic device that enables integrated features. Anal Chem 85:5622–5626. 10.1021/ac4009594 10.1021/ac4009594 PubMed DOI
C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, US4575330A, 1986. https://patents.google.com/patent/US4575330A/en (accessed November 27, 2023).
Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. 10.1016/j.biomaterials.2010.04.050 10.1016/j.biomaterials.2010.04.050 PubMed DOI
Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89. 10.1016/j.cad.2015.04.00110.1016/j.cad.2015.04.001 DOI
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290. 10.1021/acs.chemrev.7b00074 10.1021/acs.chemrev.7b00074 PubMed DOI PMC
Au AK, Lee W, Folch A (2014) Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14:1294–1301. 10.1039/C3LC51360B 10.1039/C3LC51360B PubMed DOI PMC
Bhargava KC, Thompson B, Malmstadt N (2014) Discrete elements for 3D microfluidics. Proc Natl Acad Sci USA 111:15013–15018. 10.1073/pnas.1414764111 10.1073/pnas.1414764111 PubMed DOI PMC
Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem 86:3124–3130. 10.1021/ac4041857 10.1021/ac4041857 PubMed DOI
Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A (2018) Desktop-stereolithography 3D-printing of a poly(dimethylsiloxane)-based material with sylgard-184 properties. Adv Mater 30:1800001. 10.1002/adma.20180000110.1002/adma.201800001 PubMed DOI PMC
Kim YT, Castro K, Bhattacharjee N, Folch A (2018) Digital manufacturing of selective porous barriers in microchannels using multi-material stereolithography. Micromachines 9:125. 10.3390/mi9030125 10.3390/mi9030125 PubMed DOI PMC
Perrucci F, Bertana V, Marasso SL, Scordo G, Ferrero S, Pirri CF, Cocuzza M, El-Tamer A, Hinze U, Chichkov BN, Canavese G, Scaltrito L (2018) Optimization of a suspended two photon polymerized microfluidic filtration system. Microelectron Eng 195:95–100. 10.1016/j.mee.2018.04.00110.1016/j.mee.2018.04.001 DOI
Penny MR, Hilton ST (2020) Design and development of 3D printed catalytically-active stirrers for chemical synthesis. React Chem & Eng 5:853–858. 10.1039/C9RE00492K10.1039/C9RE00492K DOI
Razavi Bazaz S, Rouhi O, Raoufi MA, Ejeian F, Asadnia M, Jin D, Ebrahimi Warkiani M (2020) 3D printing of inertial microfluidic devices. Sci Rep 10:5929. 10.1038/s41598-020-62569-9 10.1038/s41598-020-62569-9 PubMed DOI PMC
Rossi S, Puglisi A, Raimondi LM, Benaglia M (2020) Stereolithography 3D-printed catalytically active devices in organic synthesis. Catalysts 10:109. 10.3390/catal1001010910.3390/catal10010109 DOI
Ruiz C, Kadimisetty K, Yin K, Mauk MG, Zhao H, Liu C (2020) Fabrication of hard–soft microfluidic devices using hybrid 3D printing. Micromachines 11:567. 10.3390/mi11060567 10.3390/mi11060567 PubMed DOI PMC
Barbosa WS, Wanderley RFF, Gioia MM, Gouvea FC, Gonçalves FM (2022) Additive or subtractive manufacturing: analysis and comparison of automotive spare-parts. Jnl Remanufactur 12:153–166. 10.1007/s13243-021-00106-110.1007/s13243-021-00106-1 DOI
Faludi J, Cline-Thomas N, Agrawala S (2017) 3D printing and its environmental implications. OECD, Paris. 10.1787/9789264271036-9-en
Watson JK, Taminger KMB (2018) A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption. J Clean Prod 176:1316–1322. 10.1016/j.jclepro.2015.12.00910.1016/j.jclepro.2015.12.009 PubMed DOI PMC
Krishna LSR, Srikanth PJ (2021) Evaluation of environmental impact of additive and subtractive manufacturing processes for sustainable manufacturing. Materials Today: Proceedings 45:3054–3060. 10.1016/j.matpr.2020.12.06010.1016/j.matpr.2020.12.060 DOI
V. Nagri, What is Low Force Stereolithography?, Truventor Blog (2019). https://blogs.truventor.ai/blogs/what-is-low-force-stereolithography/ (accessed April 25, 2023).
Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, Viglione MS, Woolley AT, Van Ry PM, Christensen KA, Nordin GP (2021) Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics. Nat Commun 12:5509. 10.1038/s41467-021-25788-w 10.1038/s41467-021-25788-w PubMed DOI PMC
Sao AK, Sharma A, Verma M, Tomar M, Chowdhuri A (2023) Development of CdS-SnO2 hybrid nanocomposite thin films for trace level detection of NO2 gas. Sensors Actuators B Chem 393:134198. 10.1016/j.snb.2023.13419810.1016/j.snb.2023.134198 DOI