Chemogenetic Tools and their Use in Studies of Neuropsychiatric Disorders
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38957949
PubMed Central
PMC11412350
DOI
10.33549/physiolres.935401
PII: 935401
Knihovny.cz E-zdroje
- MeSH
- duševní poruchy * genetika metabolismus MeSH
- klozapin analogy a deriváty farmakologie terapeutické užití MeSH
- lidé MeSH
- neurony metabolismus účinky léků MeSH
- nové syntetické drogy farmakologie MeSH
- receptory spřažené s G-proteiny metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- klozapin MeSH
- nové syntetické drogy MeSH
- receptory spřažené s G-proteiny MeSH
Chemogenetics is a newly developed set of tools that allow for selective manipulation of cell activity. They consist of a receptor mutated irresponsive to endogenous ligands and a synthetic ligand that does not interact with the wild-type receptors. Many different types of these receptors and their respective ligands for inhibiting or excitating neuronal subpopulations were designed in the past few decades. It has been mainly the G-protein coupled receptors (GPCRs) selectively responding to clozapine-N-oxide (CNO), namely Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), that have been employed in research. Chemogenetics offers great possibilities since the activity of the receptors is reversible, inducible on demand by the ligand, and non-invasive. Also, specific groups or types of neurons can be selectively manipulated thanks to the delivery by viral vectors. The effect of the chemogenetic receptors on neurons lasts longer, and even chronic activation can be achieved. That can be useful for behavioral testing. The great advantage of chemogenetic tools is especially apparent in research on brain diseases since they can manipulate whole neuronal circuits and connections between different brain areas. Many psychiatric or other brain diseases revolve around the dysfunction of specific brain networks. Therefore, chemogenetics presents a powerful tool for investigating the underlying mechanisms causing the disease and revealing the link between the circuit dysfunction and the behavioral or cognitive symptoms observed in patients. It could also contribute to the development of more effective treatments.
Zobrazit více v PubMed
O’Brien JL, O’Keefe KM, LaViolette PS, DeLuca AN, Blacker D, Dickerson BC, Sperling RA. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology. 2010;74:1969–1976. doi: 10.1212/WNL.0b013e3181e3966e. PubMed DOI PMC
Fletcher PC, McKenna PJ, Frith CD, Grasby PM, Friston KJ, Dolan RJ. Brain Activations in Schizophrenia During a Graded Memory Task Studied With Functional Neuroimaging. Arch Gen Psychiatry. 1998;55:1001–1008. doi: 10.1001/archpsyc.55.11.1001. PubMed DOI
Flores-Dourojeanni JP, van Rijt C, van den Munkhof MH, Boekhoudt L, Luijendijk MCM, Vanderschuren LJMJ, Adan RAH. Temporally Specific Roles of Ventral Tegmental Area Projections to the Nucleus Accumbens and Prefrontal Cortex in Attention and Impulse Control. J Neurosci. 2021;41:4293–4304. doi: 10.1523/JNEUROSCI.0477-20.2020. PubMed DOI PMC
Padmanabhan JL, Cooke D, Joutsa J, Siddiqi SH, Ferguson M, Darby RR, Soussand L, et al. A human depression circuit derived from focal brain lesions. Biol Psychiatry. 2019;86:749–758. doi: 10.1016/j.biopsych.2019.07.023. PubMed DOI PMC
Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci. 2016;19:1356–1366. doi: 10.1038/nn.4377. PubMed DOI PMC
Telensky P, Svoboda J, Blahna K, Bureš J, Kubik S, Stuchlik A. Functional inactivation of the rat hippocampus disrupts avoidance of a moving object. Proc Natl Acad Sci U S A. 2011;108:5414–5418. doi: 10.1073/pnas.1102525108. PubMed DOI PMC
Stuchlík A, Petrásek T, Prokopová I, Holubová K, Hatalová H, Valeš K, Kubík S, et al. Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol Res. 2013;62(Suppl 1):S1–S19. doi: 10.33549/physiolres.932635. PubMed DOI
Stuchlik A, Kubik S, Vlcek K, Vales K. Spatial navigation: implications for animal models, drug development and human studies. Physiol Res. 2014;63(Suppl 1):S237–S249. doi: 10.33549/physiolres.932660. PubMed DOI
Vales K, Stuchlik A. Central muscarinic blockade interferes with retrieval and reacquisition of active allothetic place avoidance despite spatial pretraining. Behav Brain Res. 2005;161:238–244. doi: 10.1016/j.bbr.2005.02.012. PubMed DOI
Stuchlik A, Vales K. Effect of dopamine D1 receptor antagonist SCH23390 and D1 agonist A77636 on active allothetic place avoidance, a spatial cognition task. Behav Brain Res. 2006;172:250–255. doi: 10.1016/j.bbr.2006.05.008. PubMed DOI
Stuchlik A, Petrasek T, Vales K. Dopamine D2 receptors and alpha1-adrenoceptors synergistically modulate locomotion and behavior of rats in a place avoidance task. Behav Brain Res. 2008;189:139–144. doi: 10.1016/j.bbr.2007.12.025. PubMed DOI
Svoboda J, Popelikova A, Stuchlik A. Drugs Interfering with Muscarinic Acetylcholine Receptors and Their Effects on Place Navigation. Front Psychiatry. 2017;8:215. doi: 10.3389/fpsyt.2017.00215. PubMed DOI PMC
Stuchlík A, Vales K. Systemic administration of MK-801, a non-competitive NMDA-receptor antagonist, elicits a behavioural deficit of rats in the Active Allothetic Place Avoidance (AAPA) task irrespectively of their intact spatial pretraining. Behav Brain Res. 2005;159:163–171. doi: 10.1016/j.bbr.2004.10.013. PubMed DOI
Coward P, Wada HG, Falk MS, Chan SDH, Meng F, Akil H, Conklin BR. Controlling signaling with a specifically designed Gi-coupled-receptor. Proc Natl Acad Sci U S A. 1998;95:352–357. doi: 10.1073/pnas.95.1.352. PubMed DOI PMC
Small KM, Brown KM, Forbes SL, Liggett SB. Modification of the β2-Adrenergic Receptor to Engineer a Receptor-Effector Complex for Gene Therapy. J Biol Chem. 2001;276:31596–31601. doi: 10.1074/jbc.M102734200. PubMed DOI
Shah K, Liu Y, Deirmengian C, Shokat KM. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc Natl Acad Sci U S A. 1997;94:3565–3570. doi: 10.1073/pnas.94.8.3565. PubMed DOI PMC
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A. 2007;104:5163–5168. doi: 10.1073/pnas.0700293104. PubMed DOI PMC
Nguyen R, Morrissey MD, Mahadevan V, Cajanding JD, Woodin MA, Yeomans JS, Takehara-Nishiuchi K, Kim JC. Parvalbumin and GAD65 Interneuron Inhibition in the Ventral Hippocampus Induces Distinct Behavioral Deficits Relevant to Schizophrenia. J Neurosci. 2014;34:14948–14960. doi: 10.1523/JNEUROSCI.2204-14.2014. PubMed DOI PMC
Alvarez-Curto E, Prihandoko R, Tautermann CS, Zwier JM, Pediani JD, Lohse MJ, Hoffmann C, et al. Developing Chemical Genetic Approaches to Explore G Protein-Coupled Receptor Function: Validation of the Use of a Receptor Activated Solely by Synthetic Ligand (RASSL) Mol Pharmacol. 2011;80:1033–1046. doi: 10.1124/mol.111.074674. PubMed DOI PMC
Vardy E, Robinson JE, Li C, Olsen RHJ, DiBerto JF, Giguere PM, Sassano FM, et al. A New DREADD Facilitates the Multiplexed Chemogenetic Interrogation of Behavior. Neuron. 2015;86:936–946. doi: 10.1016/j.neuron.2015.03.065. PubMed DOI PMC
Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM. Chemical and genetic engineering of selective ligand-ion channel interactions. Science. 2011;333:1292–1296. doi: 10.1126/science.1206606. PubMed DOI PMC
Sweger EJ, Casper KB, Scearce-Levie K, Conklin BR, McCarthy KD. Development of Hydrocephalus in Mice Expressing the Gi-Coupled GPCR Ro1 RASSL Receptor in Astrocytes. J Neurosci. 2007;27:2309–2317. doi: 10.1523/JNEUROSCI.4565-06.2007. PubMed DOI PMC
Slimko EM, McKinney S, Anderson DJ, Davidson N, Lester HA. Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels. J Neurosci. 2002;22:7373–7379. doi: 10.1523/JNEUROSCI.22-17-07373.2002. PubMed DOI PMC
Lynagh T, Lynch JW. An Improved Ivermectin-activated Chloride Channel Receptor for Inhibiting Electrical Activity in Defined Neuronal Populations. J Biol Chem. 2010;285:14890–14897. doi: 10.1074/jbc.M110.107789. PubMed DOI PMC
Gillespie PG, Gillespie SKH, Mercer JA, Shah K, Shokat KM. Engineering of the Myosin-Iβ Nucleotide-binding Pocket to Create Selective Sensitivity to N 6-modified ADP Analogs. J Biol Chem. 2010;285:14890–14897. doi: 10.1074/jbc.274.44.31373. PubMed DOI
Bishop A, Buzko O, Heyeck-Dumas S, Jung I, Kraybill B, Liu Y, Shah K, et al. Unnatural Ligands for Engineered Proteins: New Tools for Chemical Genetics. Annu Rev Biophys Biomol Struct. 2000;29:577–606. doi: 10.1146/annurev.biophys.29.1.577. PubMed DOI
Steiner K, Schwab H. Recent advances in rational approaches for enzyme engineering. Comput Struct Biotechnol J. 2012;2:e201209010. doi: 10.5936/csbj.201209010. PubMed DOI PMC
Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D, Nawathe S, et al. Long-term Safety and Efficacy Following Systemic Administration of a Self-complementary AAV Vector Encoding Human FIX Pseudotyped With Serotype 5 and 8 Capsid Proteins. Mol Ther. 2011;19:876–885. doi: 10.1038/mt.2010.274. PubMed DOI PMC
Aschauer DF, Kreuz S, Rumpel S. Analysis of Transduction Efficiency, Tropism and Axonal Transport of AAV Serotypes 1, 2, 5, 6, 8 and 9 in the Mouse Brain. PLoS One. 2013;8:e76310. doi: 10.1371/journal.pone.0076310. PubMed DOI PMC
Tervo DGR, Huang B-Y, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron. 2016;92:372–382. doi: 10.1016/j.neuron.2016.09.021. PubMed DOI PMC
Blömer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol. 1997;71:6641–6649. doi: 10.1128/jvi.71.9.6641-6649.1997. PubMed DOI PMC
Foldi CJ, Milton LK, Oldfield BJ. The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats. Neuropsychopharmacology. 2017;42:2292–2300. doi: 10.1038/npp.2017.63. PubMed DOI PMC
Krisky D, Marconi P, Oligino T, Rouse R, Fink D, Cohen J, Watkins S, Glorioso J. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther. 1998;5:1517–1530. doi: 10.1038/sj.gt.3300755. PubMed DOI
Keaveney MK, Rahsepar B, Tseng H, Fernandez FR, Mount RA, Ta T, White JA, et al. CaMKIIα-Positive Interneurons Identified via a microRNA-Based Viral Gene Targeting Strategy. J Neurosci. 2020;40:9576–9588. doi: 10.1523/JNEUROSCI.2570-19.2020. PubMed DOI PMC
Maestas-Olguin C, Fennelly JW, Pentkowski NS. Chemogenetic inhibition of ventral hippocampal CaMKIIα-expressing neurons attenuates anxiety- but not fear-like defensive behaviors in male Long-Evans hooded rats. Neurosci Lett. 2021;751:135777. doi: 10.1016/j.neulet.2021.135777. PubMed DOI
Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping. J Neurosci. 2008;28:7025–7030. doi: 10.1523/JNEUROSCI.1954-08.2008. PubMed DOI PMC
Ge F, Wang N, Cui C, Li Y, Liu Y, Ma Y, Liu S, Zhang H, Sun X. Glutamatergic Projections from the Entorhinal Cortex to Dorsal Dentate Gyrus Mediate Context-Induced Reinstatement of Heroin Seeking. Neuropsychopharmacology. 2017;42:1860–1870. doi: 10.1038/npp.2017.14. PubMed DOI PMC
Roth BL. DREADDs for Neuroscientists. Neuron. 2016;89:683–694. doi: 10.1016/j.neuron.2016.01.040. PubMed DOI PMC
Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, Weinshenker D. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8:3840. doi: 10.1038/s41598-018-22116-z. PubMed DOI PMC
Michael DS, Heather AB, Rachel JS, Li H, Philip GH, Peter WK. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking. Biol Psychiatry. 2015;78:441–451. doi: 10.1016/j.biopsych.2015.02.016. PubMed DOI PMC
Zhu H, Aryal DK, Olsen RHJ, Urban DJ, Swearingen A, Forbes S, Roth BL, Hochgeschwender U. Cre dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genesis. 2016;54:439–446. doi: 10.1002/dvg.22949. PubMed DOI PMC
Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, et al. Designer Receptors Show Role for Ventral Pallidum Input to Ventral Tegmental Area in Cocaine Seeking. Nat Neurosci. 2014;17:577–585. doi: 10.1038/nn.3664. PubMed DOI PMC
Cassataro D, Bergfeldt D, Malekian C, Snellenberg JXV, Thanos PK, Fishell G, Sjulson L. Reverse Pharmacogenetic Modulation of the Nucleus Accumbens Reduces Ethanol Consumption in a Limited Access Paradigm. Neuropsychopharmacology. 2014;39:283–290. doi: 10.1038/npp.2013.184. PubMed DOI PMC
Shukla AK, Westfield GH, Xiao K, Reis RI, Huang L-Y, Tripathi-Shukla P, Qian J, et al. Visualization of arrestin recruitment by a G Protein-Coupled Receptor. Nature. 2014;512:218–222. doi: 10.1038/nature13430. PubMed DOI PMC
DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. β-Arrestins and Cell Signaling. Annu Rev Physiol. 2007;69:483–510. doi: 10.1146/annurev.physiol.69.022405.154749. PubMed DOI
Wacker D, Wang C, Katritch V, Han GW, Huang X-P, Vardy E, McCorvy JD, et al. Structural Features for Functional Selectivity at Serotonin Receptors. Science. 2013;340:615–619. doi: 10.1126/science.1232808. PubMed DOI PMC
Marti-Solano M, Crilly SE, Malinverni D, Munk C, Harris M, Pearce A, Quon T, et al. Combinatorial expression of functionally distinct GPCR isoforms can diversify receptor signalling response. Nature. 2020;587:650–656. doi: 10.1038/s41586-020-2888-2. PubMed DOI PMC
Hwang YW, Miller DL. A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP regulatory protein. J Biol Chem. 1987;262:13081–13085. doi: 10.1016/S0021-9258(18)45170-8. PubMed DOI
Bishop AC, Shah K, Liu Y, Witucki L, Kung C, Shokat KM. Design of allele-specific inhibitors to probe protein kinase signaling. Current Biology. 1998;8:257–266. doi: 10.1016/S0960-9822(98)70198-8. PubMed DOI
Liu Y, Shah K, Yang F, Witucki L, Shokat KM. Engineering Src family protein kinases with unnatural nucleotide specificity. Chem Biol. 1998;5:91–101. doi: 10.1016/S1074-5521(98)90143-0. PubMed DOI
Soskis MJ, Ho H-YH, Bloodgood BL, Robichaux MA, Malik AN, Ataman B, Rubin AA, et al. A Chemical Genetic Approach Reveals Distinct Mechanisms of EphB Signaling During Brain Development. Nat Neurosci. 2012;15:1645–1654. doi: 10.1038/nn.3249. PubMed DOI PMC
Häring D, Distefano MD. Enzymes by Design: Chemogenetic Assembly of Transamination Active Sites Containing Lysine Residues for Covalent Catalysis. Bioconjug Chem. 2001;12:385–390. doi: 10.1021/bc000117c. PubMed DOI
Strader CD, Gaffney T, Sugg EE, Candelore MR, Keys R, Patchett AA, Dixon RA. Allele-specific activation of genetically engineered receptors. J Biol Chem. 1991;266:5–8. doi: 10.1016/S0021-9258(18)52392-9. PubMed DOI
MacLaren DAA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, España RA, Clark SD. Clozapine N-Oxide Administration Produces Behavioral Effects in Long-Evans Rats: Implications for Designing DREADD Experiments. eNeuro. 2016;3:ENEURO.0219-16.2016. doi: 10.1523/ENEURO.0219-16.2016. PubMed DOI PMC
Eisdorfer J, Smit R, Keefe K, Lemay M, Smith G, Spence A. Epidural Electrical Stimulation: A Review of Plasticity Mechanisms That Are Hypothesized to Uderly Enhanced Recovery From Spinal Cord Injury With Stimulation. Front Mol Neurosci. 2020;13:163. doi: 10.3389/fnmol.2020.00163. PubMed DOI PMC
Nguyen TT, Smith JK, Johnson LM, Brown AD. Emerging ligand-gated ion channels: eLGIC type based on acetylcholine receptors. J Clin Neurosci. 2024;56:123–135.
Wess J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol. 2004;44:423–450. doi: 10.1146/annurev.pharmtox.44.101802.121622. PubMed DOI
Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–683. doi: 10.1038/nrd1468. PubMed DOI
Katzung BG. Basic & Clinical Pharmacology. McGraw-Hill Education; 2018. p. 1265.
Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006;16:710–715. doi: 10.1016/j.conb.2006.09.002. PubMed DOI PMC
Chen X, Ye H, Kuruvilla R, Ramanan N, Scangos KW, Zhang C, Johnson NM, et al. A chemical-genetic approach to studying neurotrophin signaling. Neuron. 2005;46:13–21. doi: 10.1016/j.neuron.2005.03.009. PubMed DOI
Collot J, Gradinaru J, Humbert N, Skander M, Zocchi A, Ward TR. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin. J Am Chem Soc. 2003;125:9030–9031. doi: 10.1021/ja035545i. PubMed DOI
Westkaemper RB, Hyde EG, Choudhary MS, Khan N, Gelbar EI, Glennon RA, Roth BL. Engineering a region of bulk tolerance in the 5-HT2A receptor. Eur J Med Chem. 1999;34:441–447. doi: 10.1016/S0223-5234(99)80094-4. DOI
Guettier J-M, Gautam D, Scarselli M, de Azua IR, Li JH, Rosemond E, Ma X, et al. A chemical-genetic approach to study G protein regulation of β cell function in vivo. Proc Natl Acad Sci U S A. 2009;106:19197–19202. doi: 10.1073/pnas.0906593106. PubMed DOI PMC
Nakajima K, Wess J. Design and Functional Characterization of a Novel, Arrestin-Biased Designer G Protein-Coupled Receptor. Mol Pharmacol. 2012;82:575–582. doi: 10.1124/mol.112.080358. PubMed DOI PMC
Stachniak TJ, Ghosh A, Sternson SM. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron. 2014;82:797–808. doi: 10.1016/j.neuron.2014.04.008. PubMed DOI PMC
Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L, Lester HA, Anderson DJ. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel. Neuron. 2007;54:35–49. doi: 10.1016/j.neuron.2007.02.030. PubMed DOI
Arenkiel BR, Klein ME, Davison IG, Katz LC, Ehlers MD. Genetic control of neuronal activity in mice conditionally expressing TRPV1. Nat Methods. 2008;5:299–302. doi: 10.1038/nmeth.1190. PubMed DOI PMC
Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron. 2009;63:27–39. doi: 10.1016/j.neuron.2009.06.014. PubMed DOI PMC
Jain S, de Azua IR, Lu H, White MF, Guettier J-M, Wess J. Chronic activation of a designer Gq-coupled receptor improves β cell function. J Clin Invest. 2013;123:1750–1762. doi: 10.1172/JCI66432. PubMed DOI PMC
Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL, Urban DJ, Lee H-M, et al. A Gαs DREADD Mouse for Selective Modulation of cAMP Production in Striatopallidal Neurons. Neuropsychopharmacology. 2013;38:854–862. doi: 10.1038/npp.2012.251. PubMed DOI PMC
McQueen G, Sendt K-V, Gillespie A, Avila A, Lally J, Vallianatou K, Chang N, et al. Changes in Brain Glutamate on Switching to Clozapine in Treatment-Resistant Schizophrenia. Schizophr Bull. 2021;47:662–671. doi: 10.1093/schbul/sbaa156. PubMed DOI PMC
Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, Ellis RJ, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017;357:503–507. doi: 10.1126/science.aan2475. PubMed DOI PMC
Jendryka M, Palchaudhuri M, Ursu D, van der Veen B, Liss B, Kätzel D, Nissen W, Pekcec A. Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Sci Rep. 2019;9:4522. doi: 10.1038/s41598-019-41088-2. PubMed DOI PMC
Goutaudier R, Coizet V, Carcenac C, Carnicella S. Compound 21, a two-edged sword with both DREADD-selective and off-target outcomes in rats. PLoS One. 2020;15:e0238156. doi: 10.1371/journal.pone.0238156. PubMed DOI PMC
Chen X, Choo H, Huang X-P, Yang X, Stone O, Roth BL, Jin J. The First Structure-Activity Relationship Studies for Designer Receptors Exclusively Activated by Designer Drugs. ACS Chem Neurosci. 2015;6:476–484. doi: 10.1021/cn500325v. PubMed DOI PMC
Thompson KJ, Khajehali E, Bradley SJ, Navarrete JS, Huang XP, Slocum S, Jin J, et al. DREADD Agonist 21 Is an Effective Agonist for Muscarinic-Based DREADDs in Vitro and in Vivo. ACS Pharmacol Transl Sci. 2018;1:61–72. doi: 10.1021/acsptsci.8b00012. PubMed DOI PMC
Weston M, Kaserer T, Wu A, Mouravlev A, Carpenter JC, Snowball A, Knauss S, et al. Olanzapine: A potent agonist at the hM4D(Gi) DREADD amenable to clinical translation of chemogenetics. Sci Adv. 2019;5:eaaw1567. doi: 10.1126/sciadv.aaw1567. PubMed DOI PMC
Urban DJ, Roth BL. DREADDs (Designer Receptors Exclusively Activated by Designer Drugs): Chemogenetic Tools with Therapeutic Utility. Annu Rev Pharmacol Toxicol. 2015;55:399–417. doi: 10.1146/annurev-pharmtox-010814-124803. PubMed DOI
Rodriguez GA, Barrett GM, Duff KE, Hussaini SA. Chemogenetic attenuation of neuronal activity in the entorhinal cortex reduces Aβ and tau pathology in the hippocampus. PLoS Biol. 2020;18:e3000851. doi: 10.1371/journal.pbio.3000851. PubMed DOI PMC
Peng Y, Grutzendler J. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci. 2016;36:632–641. doi: 10.1523/JNEUROSCI.2531-15.2016. PubMed DOI PMC
Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, Fu VM, Lembeck NA, Cohen RM, Weinshenker D. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer’s disease. Brain. 2017;140:3023–3038. doi: 10.1093/brain/awx232. PubMed DOI PMC
Chiang ACA, Fowler SW, Savjani RR, Hilsenbeck SG, Wallace CE, Cirrito JR, Das P, Jankowsky JL. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med. 2018;215:1349–1364. doi: 10.1084/jem.20171484. PubMed DOI PMC
Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, et al. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res. 2015;93:144–157. doi: 10.1016/j.neures.2014.09.002. PubMed DOI
Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118:3143–3150. doi: 10.1172/JCI35798. PubMed DOI PMC
Zhou Q-G, Nemes AD, Lee D, Ro EJ, Zhang J, Nowacki AS, Dymecki SM, et al. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Invest. 2019;129:310–323. doi: 10.1172/JCI95731. PubMed DOI PMC
Drexel M, Romanov RA, Wood J, Weger S, Heilbronn R, Wulff P, Tasan RO, et al. Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. J Neurosci. 2017;37:8166–8179. doi: 10.1523/JNEUROSCI.3456-16.2017. PubMed DOI PMC
Kätzel D, Nicholson E, Schorge S, Walker MC, Kullmann DM. Chemical-genetic attenuation of focal neocortical seizures. Nat Commun. 2014;5:3847. doi: 10.1038/ncomms4847. PubMed DOI PMC
Wicker E, Forcelli PA. Chemogenetic silencing of the midline and intralaminar thalamus blocks amygdala-kindled seizures. Exp Neurol. 2016;283:404–412. doi: 10.1016/j.expneurol.2016.07.003. PubMed DOI PMC
Lieb A, Qiu Y, Dixon CL, Heller JP, Walker MC, Schorge S, Kullmann DM. Biochemical autoregulatory gene therapy for focal epilepsy. Nat Med. 2018;24:1324–1329. doi: 10.1038/s41591-018-0103-x. PubMed DOI PMC
Bouchet CA, Miner MA, Loetz EC, Rosberg AJ, Hake HS, Farmer CE, Ostrovskyy M, et al. Activation of Nigrostriatal Dopamine Neurons during Fear Extinction Prevents the Renewal of Fear. Neuropsychopharmacology. 2018;43:665–672. doi: 10.1038/npp.2017.235. PubMed DOI PMC
Kato TM, Fujimori-Tonou N, Mizukami H, Ozawa K, Fujisawa S, Kato T. Presynaptic dysregulation of the paraventricular thalamic nucleus causes depression-like behavior. Sci Rep. 2019;9:16506. doi: 10.1038/s41598-019-52984-y. PubMed DOI PMC
Han S, Yang SH, Kim JY, Mo S, Yang E, Song KM, Ham B-J, Mechawar N, Turecki G, Lee HW, Kim H. Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior. Sci Rep. 2017;7:900. doi: 10.1038/s41598-017-01088-6. PubMed DOI PMC
Donegan JJ, Boley AM, Yamaguchi J, Toney GM, Lodge DJ. Modulation of extrasynaptic GABAA alpha 5 receptors in the ventral hippocampus normalizes physiological and behavioral deficits in a circuit specific manner. Nat Commun. 2019;10:2819. doi: 10.1038/s41467-019-10800-1. PubMed DOI PMC
Parnaudeau S, Taylor K, Bolkan SS, Ward RD, Balsam PD, Kellendonk C. Mediodorsal Thalamus Hypofunction Impairs Flexible Goal-Directed Behavior. Biol Psychiatry. 2015;77:445–453. doi: 10.1016/j.biopsych.2014.03.020. PubMed DOI PMC
Boekhoudt L, Omrani A, Luijendijk MCM, Wolterink-Donselaar IG, Wijbrans EC, van der Plasse G, Adan RAH. Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats. Eur Neuropsychopharmacol. 2016;26:1784–1793. doi: 10.1016/j.euroneuro.2016.09.003. PubMed DOI
Boekhoudt L, Voets ES, Flores-Dourojeanni JP, Luijendijk MC, Vanderschuren LJ, Adan RA. Chemogenetic Activation of Midbrain Dopamine Neurons Affects Attention, but not Impulsivity, in the Five-Choice Serial Reaction Time Task in Rats. Neuropsychopharmacology. 2017;42:1315–1325. doi: 10.1038/npp.2016.235. PubMed DOI PMC
Volkow ND, Wang G-J, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y-S, et al. Therapeutic Doses of Oral Methylphenidate Significantly Increase Extracellular Dopamine in the Human Brain. J Neurosci. 2001;21:RC121. doi: 10.1523/JNEUROSCI.21-02-j0001.2001. PubMed DOI PMC
Fitzpatrick CM, Runegaard AH, Christiansen SH, Hansen NW, Jørgensen SH, McGirr JC, de Diego Ajenjo A, et al. Differential effects of chemogenetic inhibition of dopamine and norepinephrine neurons in the mouse 5-choice serial reaction time task. Prog Neuropsychopharmacol Biol Psychiatry. 2019;90:264–276. doi: 10.1016/j.pnpbp.2018.12.004. PubMed DOI
Fernandez-Ruiz J, Hakvoort Schwerdtfeger RM, Alahyane N, Brien DC, Coe BC, Munoz DP. Dorsolateral prefrontal cortex hyperactivity during inhibitory control in children with ADHD in the antisaccade task. Brain Imaging Behav. 2020;14:2450–2463. doi: 10.1007/s11682-019-00196-3. PubMed DOI
Yu-Feng Z, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, Li-Xia T, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91. doi: 10.1016/j.braindev.2006.07.002. PubMed DOI
Pati S, Salvi SS, Kallianpur M, Vaidya B, Banerjee A, Maiti S, Clement JP, Vaidya VA. Chemogenetic Activation of Excitatory Neurons Alters Hippocampal Neurotransmission in a Dose-Dependent Manner. eNeuro. 2019;6:ENEURO.0124–19.2019. doi: 10.1523/ENEURO.0124-19.2019. PubMed DOI PMC
Fredericks JM, Dash KE, Jaskot EM, Bennett TW, Lerchner W, Dold G, Ide D, et al. Methods for Mechanical Delivery of Viral Vectors into Rhesus Monkey Brain. J Neurosci Methods. 2020;339:108730. doi: 10.1016/j.jneumeth.2020.108730. PubMed DOI PMC
Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E, Gotlib IH. Default-mode and task-positive network activity in Major Depressive Disorder: Implications for adaptive and maladaptive rumination. Biol Psychiatry. 2011;70:327–333. doi: 10.1016/j.biopsych.2011.02.003. PubMed DOI PMC
Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, et al. Evaluation of Outcomes With Citalopram for Depression Using Measurement-Based Care in STAR*D: Implications for Clinical Practice. Am J Psychiatry. 2006;163:28–40. doi: 10.1176/appi.ajp.163.1.28. PubMed DOI