Personalized dendritic cell vaccine in multimodal individualized combination therapy improves survival in high-risk pediatric cancer patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023049
Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1395/2022
Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1625/2023
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
101059788
HORIZON EUROPE
65269705
Ministerstvo Zdravotnictví České Republiky, FNBr
NV19-03-00562
Ministerstvo Zdravotnictví České Republiky, FNBr
PubMed
38958237
DOI
10.1002/ijc.35062
Knihovny.cz E-zdroje
- Klíčová slova
- N‐of‐1, cancer vaccine, immunotherapy, metronomic chemotherapy, rare cancer,
- MeSH
- cyklofosfamid * terapeutické užití aplikace a dávkování MeSH
- dendritické buňky * imunologie MeSH
- dítě MeSH
- imunoterapie metody MeSH
- individualizovaná medicína * metody MeSH
- inhibitory kontrolních bodů terapeutické užití MeSH
- kojenec MeSH
- kombinovaná terapie MeSH
- lidé MeSH
- metronomické podávání léků MeSH
- mladiství MeSH
- nádory * mortalita imunologie terapie farmakoterapie MeSH
- následné studie MeSH
- předškolní dítě MeSH
- protinádorové vakcíny * aplikace a dávkování terapeutické užití MeSH
- vinblastin aplikace a dávkování terapeutické užití MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklofosfamid * MeSH
- inhibitory kontrolních bodů MeSH
- protinádorové vakcíny * MeSH
- vinblastin MeSH
A lot of hope for high-risk cancers is being pinned on immunotherapy but the evidence in children is lacking due to the rarity and limited efficacy of single-agent approaches. Here, we aim to assess the effectiveness of multimodal therapy comprising a personalized dendritic cell (DC) vaccine in children with relapsed and/or high-risk solid tumors using the N-of-1 approach in real-world scenario. A total of 160 evaluable events occurred in 48 patients during the 4-year follow-up. Overall survival of the cohort was 7.03 years. Disease control after vaccination was achieved in 53.8% patients. Comparative survival analysis showed the beneficial effect of DC vaccine beyond 2 years from initial diagnosis (HR = 0.53, P = .048) or in patients with disease control (HR = 0.16, P = .00053). A trend for synergistic effect with metronomic cyclophosphamide and/or vinblastine was indicated (HR = 0.60 P = .225). A strong synergistic effect was found for immune check-point inhibitors (ICIs) after priming with the DC vaccine (HR = 0.40, P = .0047). In conclusion, the personalized DC vaccine was an effective component in the multimodal individualized treatment. Personalized DC vaccine was effective in less burdened or more indolent diseases with a favorable safety profile and synergized with metronomic and/or immunomodulating agents.
Department of Laboratory Medicine University Hospital Brno Brno Czech Republic
Department of Laboratory Methods Faculty of Medicine Masaryk University Brno Czech Republic
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Pharmacy University Hospital Brno Brno Czech Republic
International Clinical Research Centre St Anne's University Hospital in Brno Brno Czech Republic
Zobrazit více v PubMed
Gatta G, Botta L, Rossi S, et al. Childhood cancer survival in Europe 1999–2007: results of EUROCARE‐5—a population‐based study. Lancet Oncol. 2014;15(1):35‐47. doi:10.1016/S1470‐2045(13)70548‐5
Church AJ, Corson LB, Kao PC, et al. Molecular profiling identifies targeted therapy opportunities in pediatric solid cancer. Nat Med. 2022;28(8):1581‐1589. doi:10.1038/s41591‐022‐01856‐6
Geoerger B, Kang HJ, Yalon‐Oren M, et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD‐L1‐positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE‐051): interim analysis of an open‐label, single‐arm, phase 1–2 trial. Lancet Oncol. 2020;21(1):121‐133. doi:10.1016/S1470‐2045(19)30671‐0
Geoerger B, Zwaan CM, Marshall LV, et al. Atezolizumab for children and young adults with previously treated solid tumours, non‐Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): a multicentre phase 1–2 study. Lancet Oncol. 2020;21(1):134‐144. doi:10.1016/S1470‐2045(19)30693‐X
Yamanaka R, Homma J, Yajima N, et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res. 2005;11(11):4160‐4167. doi:10.1158/1078‐0432.CCR‐05‐0120
Wang QT, Nie Y, Sun SN, et al. Tumor‐associated antigen‐based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol Immunother. 2020;69(7):1375‐1387. doi:10.1007/s00262‐020‐02496‐w
de Bruijn S, Anguille S, Verlooy J, et al. Dendritic cell‐based and other vaccination strategies for pediatric cancer. Cancer. 2019;11(9):1396. doi:10.3390/cancers11091396
Shalita C, Hanzlik E, Kaplan S, Thompson EM. Immunotherapy for the treatment of pediatric brain tumors: a narrative review. Transl Pediatr. 2022;11(12):2040‐2056. doi:10.21037/tp‐22‐86
Fehres CM, Unger WWJ, Garcia‐Vallejo JJ, Van Kooyk Y. Understanding the biology of antigen cross‐presentation for the design of vaccines against cancer. Front Immunol. 2014;5:5. doi:10.3389/fimmu.2014.00149
Calmeiro J, Carrascal MA, Tavares AR, et al. Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type 1 dendritic cells. Pharmaceutics. 2020;12(2):158. doi:10.3390/pharmaceutics12020158
Neradil J, Kyr M, Polaskova K, et al. Phospho‐protein arrays as effective tools for screening possible targets for kinase inhibitors and their use in precision pediatric oncology. Front Oncol. 2019;9:930. doi:10.3389/fonc.2019.00930
Hlavackova E, Pilatova K, Cerna D, et al. Dendritic cell‐based immunotherapy in advanced sarcoma and neuroblastoma pediatric patients: anti‐cancer treatment preceding monocyte harvest impairs the immunostimulatory and antigen‐presenting behavior of DCs and manufacturing process outcome. Front Oncol. 2019;9:1034. doi:10.3389/fonc.2019.01034
Fedorova L, Mudry P, Pilatova K, et al. Assessment of immune response following dendritic cell‐based immunotherapy in pediatric patients with relapsing sarcoma. Front Oncol. 2019;9:1169. doi:10.3389/fonc.2019.01169
Kyr M, Polaskova K, Kuttnerova Z, et al. Individualization of treatment improves the survival of children with high‐risk solid tumors: comparative patient series analysis in a real‐life scenario. Front Oncol. 2019;9:644. doi:10.3389/fonc.2019.00644
Kyr M, Svobodnik A, Stepanova R, Hejnova R. N‐of‐1 trials in pediatric oncology: from a population‐based approach to personalized medicine—a review. Cancer. 2021;13(21):5428. doi:10.3390/cancers13215428
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2022 https://www.R-project.org/
Zhang Z, Reinikainen J, Adeleke KA, Pieterse ME, Groothuis‐Oudshoorn CGM. Time‐varying covariates and coefficients in Cox regression models. Ann Transl Med. 2018;6(7):121. doi:10.21037/atm.2018.02.12
Box‐Steffensmeier JM, De Boef S. Repeated events survival models: the conditional frailty model. Stat Med. 2006;25(20):3518‐3533. doi:10.1002/sim.2434
Prentice RL, Williams BJ, Peterson AV. On the regression analysis of multivariate failure time data. Biometrika. 1981;68(2):373‐379. doi:10.1093/biomet/68.2.373
Von Hoff DD, Stephenson JJ, Rosen P, et al. Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. JCO. 2010;28(33):4877‐4883. doi:10.1200/JCO.2009.26.5983
Simon T, Berthold F, Borkhardt A, Kremens B, De Carolis B, Hero B. Treatment and outcomes of patients with relapsed, high‐risk neuroblastoma: results of German trials: outcome of relapsed, high‐risk neuroblastoma. Pediatr Blood Cancer. 2011;56(4):578‐583. doi:10.1002/pbc.22693
Huybrechts S, Le Teuff G, Tauziède‐Espariat A, et al. Prognostic clinical and biologic features for overall survival after relapse in childhood medulloblastoma. Cancer. 2020;13(1):53. doi:10.3390/cancers13010053
Oberlin O, Rey A, Lyden E, et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European Cooperative Groups. JCO. 2008;26(14):2384‐2389. doi:10.1200/JCO.2007.14.7207
Barker LM, Pendergrass TW, Sanders JE, Hawkins DS. Survival after recurrence of Ewing's sarcoma family of tumors. JCO. 2005;23(19):4354‐4362. doi:10.1200/JCO.2005.05.105
Johnston DL, Keene D, Strother D, et al. Survival following tumor recurrence in children with medulloblastoma. J Pediatr Hematol Oncol. 2018;40(3):e159‐e163. doi:10.1097/MPH.0000000000001095
Ritzmann TA, Rogers HA, Paine SML, et al. A retrospective analysis of recurrent pediatric ependymoma reveals extremely poor survival and ineffectiveness of current treatments across central nervous system locations and molecular subgroups. Pediatr Blood Cancer. 2020;67(9):e28426. doi:10.1002/pbc.28426
Mackall CL, Rhee EH, Read EJ, et al. A pilot study of consolidative immunotherapy in patients with high‐risk pediatric sarcomas. Clin Cancer Res. 2008;14(15):4850‐4858. doi:10.1158/1078‐0432.CCR‐07‐4065
Gulley JL, Madan RA, Schlom J. Impact of tumour volume on the potential efficacy of therapeutic vaccines. Curr Oncol. 2011;18(3):150‐157. doi:10.3747/co.v18i3.783
Polaskova K, Merta T, Martincekova A, et al. Comprehensive molecular profiling for relapsed/refractory pediatric Burkitt lymphomas—retrospective analysis of three real‐life clinical cases—addressing issues on randomization and customization at the bedside. Front Oncol. 2020;9:1531. doi:10.3389/fonc.2019.01531
Kim SI, Cassella CR, Byrne KT. Tumor burden and immunotherapy: impact on immune infiltration and therapeutic outcomes. Front Immunol. 2021;11:629722. doi:10.3389/fimmu.2020.629722
Veltman JD, Lambers MEH, van Nimwegen M, et al. Low‐dose cyclophosphamide synergizes with dendritic cell‐based immunotherapy in antitumor activity. J Biomed Biotechnol. 2010;2010:1‐10. doi:10.1155/2010/798467
Tanaka H, Matsushima H, Nishibu A, Clausen BE, Takashima A. Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res. 2009;69(17):6987‐6994. doi:10.1158/0008‐5472.CAN‐09‐1106
Kleponis J, Skelton R, Zheng L. Fueling the engine and releasing the break: combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol Med. 2015;12(3):201‐208. doi:10.7497/j.issn.2095‐3941.2015.0046
Zhao J, Chen Y, Ding ZY, Liu JY. Safety and efficacy of therapeutic cancer vaccines alone or in combination with immune checkpoint inhibitors in cancer treatment. Front Pharmacol. 2019;10:1184. doi:10.3389/fphar.2019.01184
Calmeiro J, Carrascal MA, Tavares AR, et al. Pharmacological combination of nivolumab with dendritic cell vaccines in cancer immunotherapy: an overview. Pharmacol Res. 2021;164:105309. doi:10.1016/j.phrs.2020.105309
van Willigen WW, Bloemendal M, Gerritsen WR, Schreibelt G, de Vries IJM, Bol KF. Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol. 2018;9:2265. doi:10.3389/fimmu.2018.02265
Boudewijns S, Koornstra RHT, Westdorp H, et al. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination. Onco Targets Ther. 2016;5(8):e1201625. doi:10.1080/2162402X.2016.1201625
Zapletalova D, André N, Deak L, et al. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: a multicenter experience. Oncology. 2012;82(5):249‐260. doi:10.1159/000336483
Shi W, Yang X, Xie S, et al. A new PD‐1‐specific nanobody enhances the antitumor activity of T‐cells in synergy with dendritic cell vaccine. Cancer Lett. 2021;522:184‐197. doi:10.1016/j.canlet.2021.09.028
Gao S, Wang J, Zhu Z, et al. Effective personalized neoantigen vaccine plus anti‐PD‐1 in a PD‐1 blockade‐resistant lung cancer patient. Immunotherapy. 2023;15(2):57‐69. doi:10.2217/imt‐2021‐0339
Teng C, Wang T, Shih F, Shyu W, Jeng L. Therapeutic efficacy of dendritic cell vaccine combined with programmed death 1 inhibitor for hepatocellular carcinoma. J Gastroenterol Hepatol. 2021;36(7):1988‐1996. doi:10.1111/jgh.15398
Cornelissen R, Hegmans JPJJ, Maat APWM, et al. Extended tumor control after dendritic cell vaccination with low‐dose cyclophosphamide as adjuvant treatment in patients with malignant pleural mesothelioma. Am J Respir Crit Care Med. 2016;193(9):1023‐1031. doi:10.1164/rccm.201508‐1573OC
Olsen HE, Lynn GM, Valdes PA, et al. Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies. Neuro‐oncol Adv. 2021;3(1):vdab027. doi:10.1093/noajnl/vdab027
Raj S, Bui MM, Springett G, et al. Long‐term clinical responses of neoadjuvant dendritic cell infusions and radiation in soft tissue sarcoma. Sarcoma. 2015;2015:1‐8. doi:10.1155/2015/614736
Merchant MS, Bernstein D, Amoako M, et al. Adjuvant immunotherapy to improve outcome in high‐risk pediatric sarcomas. Clin Cancer Res. 2016;22(13):3182‐3191. doi:10.1158/1078‐0432.CCR‐15‐2550
Krishnadas DK, Shusterman S, Bai F, et al. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE‐A1, MAGE‐A3 and NY‐ESO‐1 for children with relapsed or therapy‐refractory neuroblastoma and sarcoma. Cancer Immunol Immunother. 2015;64(10):1251‐1260. doi:10.1007/s00262‐015‐1731‐3
Medikonda R, Dunn G, Rahman M, Fecci P, Lim M. A review of glioblastoma immunotherapy. J Neurooncol. 2021;151(1):41‐53. doi:10.1007/s11060‐020‐03448‐1
Di Maio M, Perrone F, Conte P. Real‐world evidence in oncology: opportunities and limitations. Oncologist. 2020;25(5):e746‐e752. doi:10.1634/theoncologist.2019‐0647