Extracorporeal cardiopulmonary resuscitation versus standard treatment for refractory out-of-hospital cardiac arrest: a Bayesian meta-analysis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, metaanalýza
PubMed
38961495
PubMed Central
PMC11223393
DOI
10.1186/s13054-024-05008-9
PII: 10.1186/s13054-024-05008-9
Knihovny.cz E-zdroje
- Klíčová slova
- Bayesian statistical inference, Conventional cardiopulmonary resuscitation, Extracorporeal cardiopulmonary resuscitation, Neurologically favorable survival, Out-of-hospital cardiac arrest, Randomized controlled trials,
- MeSH
- Bayesova věta * MeSH
- kardiopulmonální resuscitace * metody normy MeSH
- lidé MeSH
- mimotělní membránová oxygenace metody MeSH
- randomizované kontrolované studie jako téma metody MeSH
- výsledek terapie MeSH
- zástava srdce mimo nemocnici * terapie mortalita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
BACKGROUND: The outcomes of several randomized trials on extracorporeal cardiopulmonary resuscitation (ECPR) in patients with refractory out-of-hospital cardiac arrest were examined using frequentist methods, resulting in a dichotomous interpretation of results based on p-values rather than in the probability of clinically relevant treatment effects. To determine such a probability of a clinically relevant ECPR-based treatment effect on neurological outcomes, the authors of these trials performed a Bayesian meta-analysis of the totality of randomized ECPR evidence. METHODS: A systematic search was applied to three electronic databases. Randomized trials that compared ECPR-based treatment with conventional CPR for refractory out-of-hospital cardiac arrest were included. The study was preregistered in INPLASY (INPLASY2023120060). The primary Bayesian hierarchical meta-analysis estimated the difference in 6-month neurologically favorable survival in patients with all rhythms, and a secondary analysis assessed this difference in patients with shockable rhythms (Bayesian hierarchical random-effects model). Primary Bayesian analyses were performed under vague priors. Outcomes were formulated as estimated median relative risks, mean absolute risk differences, and numbers needed to treat with corresponding 95% credible intervals (CrIs). The posterior probabilities of various clinically relevant absolute risk difference thresholds were estimated. RESULTS: Three randomized trials were included in the analysis (ECPR, n = 209 patients; conventional CPR, n = 211 patients). The estimated median relative risk of ECPR for 6-month neurologically favorable survival was 1.47 (95%CrI 0.73-3.32) with a mean absolute risk difference of 8.7% (- 5.0; 42.7%) in patients with all rhythms, and the median relative risk was 1.54 (95%CrI 0.79-3.71) with a mean absolute risk difference of 10.8% (95%CrI - 4.2; 73.9%) in patients with shockable rhythms. The posterior probabilities of an absolute risk difference > 0% and > 5% were 91.0% and 71.1% in patients with all rhythms and 92.4% and 75.8% in patients with shockable rhythms, respectively. CONCLUSION: The current Bayesian meta-analysis found a 71.1% and 75.8% posterior probability of a clinically relevant ECPR-based treatment effect on 6-month neurologically favorable survival in patients with all rhythms and shockable rhythms. These results must be interpreted within the context of the reported credible intervals and varying designs of the randomized trials. REGISTRATION: INPLASY (INPLASY2023120060, December 14th, 2023, https://doi.org/10.37766/inplasy2023.12.0060 ).
Cardiovascular Research Institute Maastricht University Maastricht Maastricht The Netherlands
Care and Public Health Research Institute University Maastricht Maastricht The Netherlands
Center for Resuscitation Medicine University of Minnesota Medical School Minneapolis MN USA
Department of Methodology and Statistics University Maastricht Maastricht The Netherlands
Zobrazit více v PubMed
Yannopoulos D, Bartos JA, Raveendran G, Conterato M, Frascone RJ, Trembley A, John R, Connett J, Benditt DG, Lurie KG, et al. Coronary artery disease in patients with out-of-hospital refractory ventricular fibrillation cardiac arrest. J Am Coll Cardiol. 2017;70(9):1109–1117. doi: 10.1016/j.jacc.2017.06.059. PubMed DOI
Choi DS, Kim T, Ro YS, Ahn KO, Lee EJ, Hwang SS, Song SW, Song KJ, Shin SD. Extracorporeal life support and survival after out-of-hospital cardiac arrest in a nationwide registry: a propensity score-matched analysis. Resuscitation. 2016;99:26–32. doi: 10.1016/j.resuscitation.2015.11.013. PubMed DOI
Yannopoulos D, Bartos J, Raveendran G, Walser E, Connett J, Murray TA, Collins G, Zhang L, Kalra R, Kosmopoulos M, et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet. 2020;396(10265):1807–1816. doi: 10.1016/S0140-6736(20)32338-2. PubMed DOI PMC
Belohlavek J, Smalcova J, Rob D, Franek O, Smid O, Pokorna M, Horak J, Mrazek V, Kovarnik T, Zemanek D, et al. Effect of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and immediate invasive assessment and treatment on functional neurologic outcome in refractory out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2022;327(8):737–747. doi: 10.1001/jama.2022.1025. PubMed DOI PMC
Suverein MM, Delnoij TSR, Lorusso R, Brandon Bravo Bruinsma GJ, Otterspoor L, Elzo Kraemer CV, Vlaar APJ, van der Heijden JJ, Scholten E, den Uil C, et al. early extracorporeal cpr for refractory out-of-hospital cardiac arrest. N Engl J Med. 2023;388(4):299–309. doi: 10.1056/NEJMoa2204511. PubMed DOI
Belohlavek J, Yannopoulos D, Smalcova J, Rob D, Bartos J, Huptych M, Kavalkova P, Kalra R, Grunau B, Taccone FS, Aufderheide TP. Intraarrest transport, extracorporeal cardiopulmonary resuscitation, and early invasive management in refractory out-of-hospital cardiac arrest: an individual patient data pooled analysis of two randomised trials. EClinicalMedicine. 2023;59:101988. doi: 10.1016/j.eclinm.2023.101988. PubMed DOI PMC
Gomes DA, Presume J, Ferreira J, Oliveira AF, Miranda T, Brizido C, Strong C, Tralhao A. Extracorporeal cardiopulmonary resuscitation for refractory out-of-hospital cardiac arrest: a systematic review and meta-analysis of randomized clinical trials. Intern Emerg Med. 2023;18(7):2113–2120. doi: 10.1007/s11739-023-03357-x. PubMed DOI
Cheema HA, Shafiee A, Jafarabady K, Seighali N, Shahid A, Ahmad A, Ahmad I, Ahmad S, Pahuja M, Dani SS. Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: a meta-analysis of randomized controlled trials. Pacing Clin Electrophysiol. 2023;46(10):1246–1250. doi: 10.1111/pace.14820. PubMed DOI
Kiyohara Y, Kampaktsis PN, Briasoulis A, Kuno T. Extracorporeal membrane oxygenation-facilitated resuscitation in out-of-hospital cardiac arrest: a meta-analysis of randomized controlled trials. J Cardiovasc Med (Hagerstown) 2023;24(7):414–419. doi: 10.2459/JCM.0000000000001503. PubMed DOI
Scquizzato T, Bonaccorso A, Swol J, Gamberini L, Scandroglio AM, Landoni G, Zangrillo A. Refractory out-of-hospital cardiac arrest and extracorporeal cardiopulmonary resuscitation: a meta-analysis of randomized trials. Artif Organs. 2023;47(5):806–816. doi: 10.1111/aor.14516. PubMed DOI
Wang JY, Chen Y, Dong R, Li S, Peng JM, Hu XY, Jiang W, Wang CY, Weng L, Du B. China critical care clinical trials G: extracorporeal vs. Conventional CPR for out-of-hospital cardiac arrest: a systematic review and meta-analysis. Am J Emerg Med. 2024;80:185–193. doi: 10.1016/j.ajem.2024.04.002. PubMed DOI
Low CJW, Ling RR, Ramanathan K, Chen Y, Rochwerg B, Kitamura T, Iwami T, Ong MEH, Okada Y. Extracorporeal cardiopulmonary resuscitation versus conventional CPR in cardiac arrest: an updated meta-analysis and trial sequential analysis. Crit Care. 2024;28(1):57. doi: 10.1186/s13054-024-04830-5. PubMed DOI PMC
Low CJW, Ramanathan K, Ling RR, Ho MJC, Chen Y, Lorusso R, MacLaren G, Shekar K, Brodie D. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with cardiac arrest: a comparative meta-analysis and trial sequential analysis. Lancet Respir Med. 2023;11(10):883–893. doi: 10.1016/S2213-2600(23)00137-6. PubMed DOI
Scquizzato T, Bonaccorso A, Consonni M, Scandroglio AM, Swol J, Landoni G, Zangrillo A. Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: A systematic review and meta-analysis of randomized and propensity score-matched studies. Artif Organs. 2022;46(5):755–762. doi: 10.1111/aor.14205. PubMed DOI PMC
Brophy JM. Key issues in the statistical interpretation of randomized clinical trials. Can J Cardiol. 2021;37(9):1312–1321. doi: 10.1016/j.cjca.2020.12.014. PubMed DOI
Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol. 2008;45(3):135–140. doi: 10.1053/j.seminhematol.2008.04.003. PubMed DOI
Wasserstein RL, Lazar NA. The ASA statement on p-values: context, process, and purpose. Am Stat. 2016;70(2):129–133. doi: 10.1080/00031305.2016.1154108. DOI
Kaul S, Diamond GA. Trial and error: How to avoid commonly encountered limitations of published clinical trials. J Am Coll Cardiol. 2010;55(5):415–427. doi: 10.1016/j.jacc.2009.06.065. PubMed DOI
Wasserstein RL, Schirm AL, Lazar NA. Moving to a world beyond “p < 005”. Am Stat. 2019;73:1–19. doi: 10.1080/00031305.2019.1583913. DOI
Pieper D, Rombey T. Where to prospectively register a systematic review. Syst Rev. 2022;11(1):8. doi: 10.1186/s13643-021-01877-1. PubMed DOI PMC
Canellas J, Ritto FG, Rodolico A, Aguglia E, Fernandes GVO, Figueredo C, Vettore MV. The international platform of registered systematic review and meta-analysis protocols (INPLASY) at 3 years: an analysis of 4,658 registered protocols on inplasy.com, platform features, and website statistics. Front Res Metr Anal. 2023;8:1135853. doi: 10.3389/frma.2023.1135853. PubMed DOI PMC
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. PubMed DOI PMC
Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898. PubMed DOI
Becker LB, Aufderheide TP, Geocadin RG, Callaway CW, Lazar RM, Donnino MW, Nadkarni VM, Abella BS, Adrie C, Berg RA, et al. Primary outcomes for resuscitation science studies: a consensus statement from the American Heart Association. Circulation. 2011;124(19):2158–2177. doi: 10.1161/CIR.0b013e3182340239. PubMed DOI PMC
Rittenberger JC, Raina K, Holm MB, Kim YJ, Callaway CW. Association between cerebral performance category, modified rankin scale, and discharge disposition after cardiac arrest. Resuscitation. 2011;82(8):1036–1040. doi: 10.1016/j.resuscitation.2011.03.034. PubMed DOI PMC
Altman DG. Confidence intervals for the number needed to treat. BMJ. 1998;317(7168):1309–1312. doi: 10.1136/bmj.317.7168.1309. PubMed DOI PMC
Nichol G, Brown SP, Perkins GD, Kim F, Sterz F, Broeckel Elrod JA, Mentzelopoulos S, Lyon R, Arabi Y, Castren M, et al. What change in outcomes after cardiac arrest is necessary to change practice? Results Int Surv Resuscit. 2016;107:115–120. PubMed
Heuts S, van de Koolwijk AF, Gabrio A, Ubben JFH, van der Horst ICC, Delnoij TSR, Suverein MM, Maessen JG, Lorusso R, van de Poll MCG: A Bayesian re-analysis of the INCEPTION-trial. Eur Heart J Acute Cardiovasc Care 2023. PubMed PMC
Belohlavek J, Kucera K, Jarkovsky J, Franek O, Pokorna M, Danda J, Skripsky R, Kandrnal V, Balik M, Kunstyr J, et al. Hyperinvasive approach to out-of hospital cardiac arrest using mechanical chest compression device, prehospital intraarrest cooling, extracorporeal life support and early invasive assessment compared to standard of care. A randomized parallel groups comparative study proposal. "Prague OHCA study". J Transl Med. 2012;10:163. doi: 10.1186/1479-5876-10-163. PubMed DOI PMC
Bol ME, Suverein MM, Lorusso R, Delnoij TSR, Brandon Bravo Bruinsma GJ, Otterspoor L, Kuijpers M, Lam KY, Vlaar APJ, Elzo Kraemer CV, et al. Early initiation of extracorporeal life support in refractory out-of-hospital cardiac arrest: Design and rationale of the INCEPTION trial. Am Heart J. 2019;210:58–68. doi: 10.1016/j.ahj.2018.12.008. PubMed DOI
Marín-Martínez F, Sánchez-Meca J. Weighting by inverse variance or by sample size in meta-analysis: a simulation study. Edu Psychol Measur. 2009;70(1):56. doi: 10.1177/0013164409344534. DOI
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. doi: 10.1186/1471-2288-14-135. PubMed DOI PMC
Schünemann HJ, Vist GE, Higgins JPT, Santesso N, Deeks JJ, Glasziou P, Akl EA, Guyatt GH. Interpreting results and drawing conclusions. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of interventions. Wiley; 2019.
Heuts S, Gabrio A, Veenstra L, Maesen B, Kats S, Maessen JG, Walton AS, Nanayakkara S, Lansky AJ. van 't Hof AWJ, Vriesendorp PA: Stroke reduction by cerebral embolic protection devices in transcatheter aortic valve implantation: a systematic review and Bayesian meta-analysis. Heart. 2023 doi: 10.1136/heartjnl-2023-323359. PubMed DOI
Borenstein M. Avoiding common mistakes in meta-analysis: Understanding the distinct roles of Q, I-squared, tau-squared, and the prediction interval in reporting heterogeneity. Res Synth Methods. 2023 doi: 10.1002/jrsm.16785. PubMed DOI
Berkhout S, Haaf J, Gronau Q, Heck D, Wagenmakers E. a tutorial on bayesian model-averaged meta-analysis in JASP. 2021. PubMed PMC
Suurmond R, van Rhee H, Hak T. Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis. Res Synth Methods. 2017;8(4):537–553. doi: 10.1002/jrsm.1260. PubMed DOI PMC
Rob D, Smalcova J, Smid O, Kral A, Kovarnik T, Zemanek D, Kavalkova P, Huptych M, Komarek A, Franek O, et al. Extracorporeal versus conventional cardiopulmonary resuscitation for refractory out-of-hospital cardiac arrest: a secondary analysis of the Prague OHCA trial. Crit Care. 2022;26(1):330. doi: 10.1186/s13054-022-04199-3. PubMed DOI PMC
Wetterslev J, Jakobsen JC, Gluud C. Trial sequential analysis in systematic reviews with meta-analysis. BMC Med Res Methodol. 2017;17(1):39. doi: 10.1186/s12874-017-0315-7. PubMed DOI PMC
Ubben JFH, Heuts S, Delnoij TSR, Suverein MM, van de Koolwijk AF, van der Horst ICC, Maessen JG, Bartos J, Kavalkova P, Rob D, et al. Extracorporeal cardiopulmonary resuscitation for refractory OHCA: lessons from three randomized controlled trials-the trialists' view. Eur Heart J Acute Cardiovasc Care. 2023;12(8):540–547. doi: 10.1093/ehjacc/zuad071. PubMed DOI PMC
Yarnell CJ, Abrams D, Baldwin MR, Brodie D, Fan E, Ferguson ND, Hua M, Madahar P, McAuley DF, Munshi L, et al. Clinical trials in critical care: can a Bayesian approach enhance clinical and scientific decision making? Lancet Respir Med. 2021;9(2):207–216. doi: 10.1016/S2213-2600(20)30471-9. PubMed DOI PMC
Rob D, Komarek A, Smalcova J, Belohlavek J. Effect of intraarrest transport, extracorporeal cardiopulmonary resuscitation, and invasive treatment: a post hoc bayesian reanalysis of a randomized clinical trial. Chest. 2023 doi: 10.1016/j.chest.2023.07.030. PubMed DOI
Ubben JFH, Suverein MM, Delnoij TSR, Heuts S, Winkens B, Gabrio A, van der Horst ICC, Maessen JG, Lorusso R, van de Poll MCG. Early extracorporeal CPR for refractory out-of-hospital cardiac arrest: a pre-planned per-protocol analysis of the INCEPTION-trial. Resuscitation. 2024;194:110033. doi: 10.1016/j.resuscitation.2023.110033. PubMed DOI