Morphological characteristics of cerebellum, pons and thalamus in Reccurent isolated sleep paralysis - A pilot study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38962392
PubMed Central
PMC11219576
DOI
10.3389/fnana.2024.1396829
Knihovny.cz E-zdroje
- Klíčová slova
- cerebellum, midbrain, pons, recurrent isolated sleep paralysis, sleep, thalamus,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Recurrent isolated sleep paralysis (RISP) is a rapid eye movement sleep (REM) parasomnia, characterized by the loss of voluntary movements upon sleep onset and/or awakening with preserved consciousness. Evidence suggests microstructural changes of sleep in RISP, although the mechanism of this difference has not been clarified yet. Our research aims to identify potential morphological changes in the brain that can reflect these regulations. MATERIALS AND METHODS: We recruited 10 participants with RISP (8 women; mean age 24.7 years; SD 2.4) and 10 healthy control subjects (w/o RISP; 3 women; mean age 26.3 years; SD 3.7). They underwent video-polysomnography (vPSG) and sleep macrostructure was analyzed. After that participants underwent magnetic resonance imaging (MRI) of the brain. We focused on 2-dimensional measurements of cerebellum, pons and thalamus. Statistical analysis was done in SPSS program. After analysis for normality we performed Mann-Whitney U test to compare our data. RESULTS: We did not find any statistically significant difference in sleep macrostructure between patients with and w/o RISP. No evidence of other sleep disturbances was found. 2-dimensional MRI measurements revealed statistically significant increase in cerebellar vermis height (p = 0.044) and antero-posterior diameter of midbrain-pons junction (p = 0.018) in RISP compared to w/o RISP. DISCUSSION: Our results suggest increase in size of cerebellum and midbrain-pons junction in RISP. This enlargement could be a sign of an over-compensatory mechanism to otherwise dysfunctional regulatory pathways. Further research should be done to measure these differences in time and with closer respect to the frequency of RISP episodes.
Zobrazit více v PubMed
American Academy of Sleep Medicine (2014). International classification of sleep disorders–third edition (Icsd-3). Darien, IL: American Academy of Sleep Medicine.
Brooks P. L., Peever J. H. (2012). Identification of the transmitter and receptor mechanisms responsible for rem sleep paralysis. J. Neurosci. 32, 9785–9795. doi: 10.1523/JNEUROSCI.0482-12.2012, PMID: PubMed DOI PMC
Canto C. B., Onuki Y., Bruinsma B., Van Der Werf Y. D., De Zeeuw C. I. (2017). The sleeping cerebellum. Trends Neurosci. 40, 309–323. doi: 10.1016/j.tins.2017.03.001 PubMed DOI
Chen M., Li Y., Chen J., Gai L., Sun J., Gu Z., et al. . (2022). Structural and functional brain alterations in patients with idiopathic rapid eye movement sleep behavior disorder. J. Neuroradiol. 49, 66–72. doi: 10.1016/j.neurad.2020.04.007, PMID: PubMed DOI
Dahlitz M., Parkes J. D. (1993). Sleep Paralysis. Lancet 341, 406–407. doi: 10.1016/0140-6736(93)92992-3 PubMed DOI
Denis D. (2018). Relationships between sleep paralysis and sleep quality: current insights. Nat Sci Sleep 10, 355–367. doi: 10.2147/NSS.S158600, PMID: PubMed DOI PMC
Denis D., French C. C., Schneider M. N., Gregory A. M. (2018). Subjective sleep-related variables in those who have and have not experienced sleep paralysis. J. Sleep Res. 27:E12650. doi: 10.1111/jsr.12650 PubMed DOI
Denis D., Poerio G. L. (2017). Terror and bliss? Commonalities and distinctions between sleep paralysis, lucid dreaming, and their associations with waking life experiences. J. Sleep Res. 26, 38–47. doi: 10.1111/jsr.12441, PMID: PubMed DOI PMC
Dharani N. E. (2005). The role of vestibular system and the cerebellum in adapting to Gravitoinertial, spatial orientation and postural challenges of rem sleep. Med. Hypotheses 65, 83–89. doi: 10.1016/j.mehy.2005.01.033, PMID: PubMed DOI
Foschi M., Rizzo G., Liguori R., Avoni P., Mancinelli L., Lugaresi A., et al. . (2019). Sleep-related disorders and their relationship with Mri findings in multiple sclerosis. Sleep Med. 56, 90–97. doi: 10.1016/j.sleep.2019.01.010, PMID: PubMed DOI
Gent T. C., Bandarabadi M., Herrera C. G., Adamantidis A. R. (2018). Thalamic dual control of sleep and wakefulness. Nat. Neurosci. 21, 974–984. doi: 10.1038/s41593-018-0164-7, PMID: PubMed DOI PMC
Giedd J. N., Raznahan A., Mills K. L., Lenroot R. K. (2012). Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol. Sex Differ. 3:19. doi: 10.1186/2042-6410-3-19, PMID: PubMed DOI PMC
Golzari S. E., Ghabili K. (2013). Alcohol-mediated sleep paralysis: the earliest known description. Sleep Med. 14:298. doi: 10.1016/j.sleep.2012.09.014, PMID: PubMed DOI
Herice C., Patel A. A., Sakata S. (2019). Circuit mechanisms and computational models of rem sleep. Neurosci. Res. 140, 77–92. doi: 10.1016/j.neures.2018.08.003, PMID: PubMed DOI PMC
Hobson J. A. (2009). Rem sleep and dreaming: towards a theory of Protoconsciousness. Nat. Rev. Neurosci. 10, 803–813. doi: 10.1038/nrn2716, PMID: PubMed DOI
Hong C. C., Harris J. C., Pearlson G. D., Kim J. S., Calhoun V. D., Fallon J. H., et al. . (2009). Fmri evidence for multisensory recruitment associated with rapid eye movements during sleep. Hum. Brain Mapp. 30, 1705–1722. doi: 10.1002/hbm.20635, PMID: PubMed DOI PMC
Hsieh S. W., Lai C. L., Liu C. K., Lan S. H., Hsu C. Y. (2010). Isolated sleep paralysis linked to impaired nocturnal sleep quality and health-related quality of life in Chinese-Taiwanese patients with obstructive sleep apnea. Qual. Life Res. 19, 1265–1272. doi: 10.1007/s11136-010-9695-4, PMID: PubMed DOI
Jandeaux C., Kuchcinski G., Ternynck C., Riquet A., Leclerc X., Pruvo J. P., et al. . (2019). Biometry of the cerebellar vermis and brain stem in children: Mr imaging reference data from measurements in 718 children. AJNR Am. J. Neuroradiol. 40, 1835–1841. doi: 10.3174/ajnr.A6257, PMID: PubMed DOI PMC
Kayama Y., Koyama Y. (2003). Control of sleep and wakefulness by brainstem monoaminergic and cholinergic neurons. Acta Neurochir. Suppl. 87, 3–6. doi: 10.1007/978-3-7091-6081-7_1, PMID: PubMed DOI
Kempf F., Brucke C., Salih F., Trottenberg T., Kupsch A., Schneider G. H., et al. . (2009). Gamma activity and reactivity in human thalamic local field potentials. Eur. J. Neurosci. 29, 943–953. doi: 10.1111/j.1460-9568.2009.06655.x, PMID: PubMed DOI
Klikova M., Piorecky M., Miletinova E., Janku K., Dudysova D., Buskova J. (2021). Objective rapid eye movement sleep characteristics of recurrent isolated sleep paralysis: a case-control study. Sleep 44:153. doi: 10.1093/sleep/zsab153, PMID: PubMed DOI
Lee D. A., Lee H. J., Park K. M. (2023). Cerebellar volume reduction in patients with isolated rem sleep behavior disorder: evidence of a potential role of the cerebellum. Eur. Neurol. 86, 341–347. doi: 10.1159/000533297, PMID: PubMed DOI
Liskova M., Janeckova D., Kluzova Kracmarova L., Mlada K., Buskova J. (2016). The occurrence and predictive factors of sleep paralysis in university students. Neuropsychiatr. Dis. Treat. 12, 2957–2962. doi: 10.2147/NDT.S115629, PMID: PubMed DOI PMC
Liu J., Shuai G., Fang W., Zhu Y., Chen H., Wang Y., et al. . (2021). Altered regional homogeneity and connectivity in cerebellum and visual-motor relevant cortex in Parkinson's disease with rapid eye movement sleep behavior disorder. Sleep Med. 82, 125–133. doi: 10.1016/j.sleep.2021.03.041, PMID: PubMed DOI
Lu J., Sherman D., Devor M., Saper C. B. (2006). A putative Flip-flop switch for control of rem sleep. Nature 441, 589–594. doi: 10.1038/nature04767, PMID: PubMed DOI
Metwally M. I., Basha M. A. A., Abdelhamid G. A., Nada M. G., Ali R. R., Frere R. A. F., et al. . (2021). Neuroanatomical Mri study: reference values for the measurements of brainstem, cerebellar vermis, And Peduncles. Br J Radiol 94:20201353. doi: 10.1259/bjr.20201353, PMID: PubMed DOI PMC
Mishra S., Ghatak S., Singh P., Agrawal D., Garg P. (2020). Transverse cerebellar diameter: a reliable predictor of gestational age. Afr. Health Sci. 20, 1927–1932. doi: 10.4314/ahs.v20i4.51 PubMed DOI PMC
Miyauchi S., Misaki M., Kan S., Fukunaga T., Koike T. (2009). Human brain activity time-locked to rapid eye movements during rem sleep. Exp. Brain Res. 192, 657–667. doi: 10.1007/s00221-008-1579-2, PMID: PubMed DOI
Mohammadi M. R., Hosseini S. H., Golalipour M. J. (2008). Morphometric measurements of the thalamus and Interthalamic adhesion by Mri in the south-east of the Caspian Sea border. Neurosciences (Riyadh) 13, 272–275, PMID: PubMed
Oguro H., Okada K., Yamaguchi S., Kobayashi S. (1998). Sex differences in morphology of the brain stem and cerebellum with Normal ageing. Neuroradiology 40, 788–792. doi: 10.1007/s002340050685, PMID: PubMed DOI
Olunu E., Kimo R., Onigbinde E. O., Akpanobong M. U., Enang I. E., Osanakpo M., et al. . (2018). Sleep paralysis, a medical condition with a diverse cultural interpretation. Int. J. Appl. Basic Med. Res. 8, 137–142. doi: 10.4103/ijabmr.IJABMR_19_18, PMID: PubMed DOI PMC
Pace-Schott E. F., Hobson J. A. (2002). The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 3, 591–605. doi: 10.1038/nrn895, PMID: PubMed DOI
Park S. H., Weber F. (2020). Neural and homeostatic regulation of rem sleep. Front. Psychol. 11:1662. doi: 10.3389/fpsyg.2020.01662, PMID: PubMed DOI PMC
Pr S., K M., Iyer R. S. (2022). Brainstem arteriovenous malformation and symptomatic excessive daytime somnolence. J. Assoc. Physicians India 70, 11–12, PMID: PubMed
Sajeev M., Shubha R., Jose K. S. (2023). Morphometric study of the third ventricle and thalamus by computerized tomography. J. Anat. Soc. India 72, 222–228. doi: 10.4103/jasi.jasi_73_22 DOI
Sharma A., Sakhamuri S., Giddings S. (2023). Recurrent fearful isolated sleep paralysis - a distressing co-morbid condition of obstructive sleep apnea. J. Family Med. Prim. Care 12, 578–580. doi: 10.4103/jfmpc.jfmpc_1127_22, PMID: PubMed DOI PMC
Sharpless B. A. (2016). A Clinician's guide to recurrent isolated sleep paralysis. Neuropsychiatr. Dis. Treat. 12, 1761–1767. doi: 10.2147/NDT.S100307, PMID: PubMed DOI PMC
Sharpless B. A., Mccarthy K. S., Chambless D. L., Milrod B. L., Khalsa S. R., Barber J. P. (2010). Isolated sleep paralysis and fearful isolated sleep paralysis in outpatients with panic attacks. J. Clin. Psychol. 66, 1292–1306. doi: 10.1002/jclp.20724, PMID: PubMed DOI PMC
Simor P., Szalardy O., Gombos F., Ujma P. P., Jordan Z., Halasz L., et al. . (2021). Rem sleep microstates in the human anterior thalamus. J. Neurosci. 41, 5677–5686. doi: 10.1523/JNEUROSCI.1899-20.2021, PMID: PubMed DOI PMC
Stahl S. M., Layzer R. B., Aminoff M. J., Townsend J. J., Feldon S. (1980). Continuous cataplexy in a patient with a midbrain tumor: the limp man syndrome. Neurology 30, 1115–1118. doi: 10.1212/WNL.30.10.1115, PMID: PubMed DOI
Stefani A., Hogl B. (2021). Nightmare disorder and isolated sleep paralysis. Neurotherapeutics 18, 100–106. doi: 10.1007/s13311-020-00966-8, PMID: PubMed DOI PMC
Szabo J. P., Fabo D., Peto N., Sakovics A., Bodizs R. (2022). Role of anterior thalamic circuitry during sleep. Epilepsy Res. 186:106999. doi: 10.1016/j.eplepsyres.2022.106999, PMID: PubMed DOI
Terzaghi M., Ratti P. L., Manni F., Manni R. (2012). Sleep paralysis in narcolepsy: more than just a motor dissociative phenomenon? Neurol. Sci. 33, 169–172. doi: 10.1007/s10072-011-0644-y, PMID: PubMed DOI
Torontali Z. A., Fraigne J. J., Sanghera P., Horner R., Peever J. (2019). The Sublaterodorsal tegmental nucleus functions to couple brain state and motor activity during rem sleep and wakefulness. Curr. Biol. 29, 3803–3813.e5. doi: 10.1016/j.cub.2019.09.026 PubMed DOI
Torontali Z. A., Grace K. P., Horner R. L., Peever J. H. (2014). Cholinergic involvement in control of rem sleep paralysis. J. Physiol. 592, 1425–1426. doi: 10.1113/jphysiol.2014.271304, PMID: PubMed DOI PMC
Tullo S., Patel R., Devenyi G. A., Salaciak A., Bedford S. A., Farzin S., et al. . (2019). Mr-based age-related effects on the striatum, Globus pallidus, and thalamus in healthy individuals across the adult lifespan. Hum. Brain Mapp. 40, 5269–5288. doi: 10.1002/hbm.24771 PubMed DOI PMC
Tutunji R., El Homsi M., Saaybi S., Al Arab N., Tamim H., Makki M., et al. . (2018). Thalamic volume and dimensions on Mri in the pediatric population: normative values and correlations: (a cross sectional study). Eur. J. Radiol. 109, 27–32. doi: 10.1016/j.ejrad.2018.10.018, PMID: PubMed DOI
Vetrivelan R., Bandaru S. S. (2023). Neural control of rem sleep and motor Atonia: current perspectives. Curr. Neurol. Neurosci. Rep. 23, 907–923. doi: 10.1007/s11910-023-01322-x, PMID: PubMed DOI PMC
Vinkesteijn A. S., Mulder P. G., Wladimiroff J. W. (2000). Fetal transverse cerebellar diameter measurements in Normal and reduced fetal growth. Ultrasound Obstet. Gynecol. 15, 47–51. doi: 10.1046/j.1469-0705.2000.00024.x, PMID: PubMed DOI
Zhang L. B., Zhang J., Sun M. J., Chen H., Yan J., Luo F. L., et al. . (2020). Neuronal activity in the cerebellum during the sleep-wakefulness transition in mice. Neurosci. Bull. 36, 919–931. doi: 10.1007/s12264-020-00511-9, PMID: PubMed DOI PMC