• This record comes from PubMed

Exploring the Functional Landscape of the p53 Regulatory Domain: The Stabilizing Role of Post-Translational Modifications

. 2024 Jul 23 ; 20 (14) : 5842-5853. [epub] 20240707

Language English Country United States Media print-electronic

Document type Journal Article

This study focuses on the intrinsically disordered regulatory domain of p53 and the impact of post-translational modifications. Through fully atomistic explicit water molecular dynamics simulations, we show the wealth of information and detailed understanding that can be obtained by varying the number of phosphorylated amino acids and implementing a restriction in the conformational entropy of the N-termini of that intrinsically disordered region. The take-home message for the reader is to achieve a detailed understanding of the impact of phosphorylation with respect to (1) the conformational dynamics and flexibility, (2) structural effects, (3) protein interactivity, and (4) energy landscapes and conformational ensembles. Although our model system is the regulatory domain p53 of the tumor suppressor protein p53, this study contributes to understanding the general effects of intrinsically disordered phosphorylated proteins and the impact of phosphorylated groups, more specifically, how minor changes in the primary sequence can affect the properties mentioned above.

See more in PubMed

Oren M. Regulation of the p53 tumor suppressor protein. J. Biol. Chem. 1999, 274, 36031–36034. 10.1074/jbc.274.51.36031. PubMed DOI

Vousden K. H. Activation of the p53 tumor suppressor protein. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2002, 1602, 47–59. 10.1016/S0304-419X(02)00035-5. PubMed DOI

Maximov G.; Maximov K. The role of p53 tumor-suppressor protein in apoptosis and cancerogenesis. Biotechnology & Biotechnological Equipment 2008, 22, 664–668. 10.1080/13102818.2008.10817532. DOI

Madden S. L.; Galella E. A.; Riley D.; Bertelsen A. H.; Beaudry G. A. Induction of cell growth regulatory genes by p53. Cancer research 1996, 56, 5384–5390. PubMed

Sionov R. V.; Hayon I. L.; Haupt Y.. Madame Curie Bioscience Database [Internet]; Landes Bioscience, 2013.

Sullivan K. D.; Galbraith M. D.; Andrysik Z.; Espinosa J. M. Mechanisms of transcriptional regulation by p53. Cell Death & Differentiation 2018, 25, 133–143. 10.1038/cdd.2017.174. PubMed DOI PMC

Molchadsky A.; Rivlin N.; Brosh R.; Rotter V.; Sarig R. p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 2010, 31, 1501–1508. 10.1093/carcin/bgq101. PubMed DOI

Carson D. A.; Lois A. Cancer progression and p53. Lancet 1995, 346, 1009–1011. 10.1016/S0140-6736(95)91693-8. PubMed DOI

Wang Y.; Reed M.; Wang P.; Stenger J. E.; Mayr G.; Anderson M. E.; Schwedes J. F.; Tegtmeyer P. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes & development 1993, 7, 2575–2586. 10.1101/gad.7.12b.2575. PubMed DOI

Raj N.; Attardi L. D. The transactivation domains of the p53 protein. Cold Spring Harbor perspectives in medicine 2017, 7, a02604710.1101/cshperspect.a026047. PubMed DOI PMC

Pavletich N. P.; Chambers K. A.; Pabo C. O. others The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes and development 1993, 7, 2556–2564. 10.1101/gad.7.12b.2556. PubMed DOI

Xue B.; Brown C. J.; Dunker A. K.; Uversky V. N. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2013, 1834, 725–738. 10.1016/j.bbapap.2013.01.012. PubMed DOI PMC

Bakker M. J.; So̷rensen H. V.; Skepo M. Exploring the Role of Globular Domain Locations on an Intrinsically Disordered Region of p53: A Molecular Dynamics Investigation. J. Chem. Theory Comput. 2024, 20, 1423–1433. 10.1021/acs.jctc.3c00971. PubMed DOI PMC

Kim H.; Kim K.; Choi J.; Heo K.; Baek H. J.; Roeder R. G.; An W. p53 requires an intact C-terminal domain for DNA binding and transactivation. Journal of molecular biology 2012, 415, 843–854. 10.1016/j.jmb.2011.12.001. PubMed DOI PMC

Terakawa T.; Takada S. p53 dynamics upon response element recognition explored by molecular simulations. Sci. Rep. 2015, 5, 17107.10.1038/srep17107. PubMed DOI PMC

Poyurovsky M. V.; Katz C.; Laptenko O.; Beckerman R.; Lokshin M.; Ahn J.; Byeon I.-J. L.; Gabizon R.; Mattia M.; Zupnick A.; et al. The C terminus of p53 binds the N-terminal domain of MDM2. Nature structural & molecular biology 2010, 17, 982–989. 10.1038/nsmb.1872. PubMed DOI PMC

Gu B.; Zhu W.-G. Surf the post-translational modification network of p53 regulation. International journal of biological sciences 2012, 8, 672.10.7150/ijbs.4283. PubMed DOI PMC

DeHart C. J.; Chahal J. S.; Flint S.; Perlman D. H. Extensive post-translational modification of active and inactivated forms of endogenous p53. Molecular & Cellular Proteomics 2014, 13, 1–17. 10.1074/mcp.M113.030254. PubMed DOI PMC

Appella E.; Anderson C. W. Post-translational modifications and activation of p53 by genotoxic stresses. European journal of biochemistry 2001, 268, 2764–2772. 10.1046/j.1432-1327.2001.02225.x. PubMed DOI

Yakovleva T.; Pramanik A.; Kawasaki T.; Tan-No K.; Gileva I.; Lindegren H.; Langel U.; Ekstrom T. J.; Rigler R.; Terenius L.; et al. p53 latency: C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences. J. Biol. Chem. 2001, 276, 15650–15658. 10.1074/jbc.M100482200. PubMed DOI

Park J. H.; Smith R. J.; Shieh S.-Y.; Roeder R. G. The GAS41-PP2Cβ complex dephosphorylates p53 at serine 366 and regulates its stability. J. Biol. Chem. 2011, 286, 10911–10917. 10.1074/jbc.C110.210211. PubMed DOI PMC

Ashcroft M.; Kubbutat M. H.; Vousden K. H. Regulation of p53 function and stability by phosphorylation. Molecular and cellular biology 1999, 19, 1751–1758. 10.1128/MCB.19.3.1751. PubMed DOI PMC

Yogosawa S.; Yoshida K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis. Cancer science 2018, 109, 3376–3382. 10.1111/cas.13792. PubMed DOI PMC

Cox M. L.; Meek D. W. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cellular signalling 2010, 22, 564–571. 10.1016/j.cellsig.2009.11.014. PubMed DOI

Maclaine N. J.; Hupp T. R. The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway. Aging 2009, 1, 490.10.18632/aging.100047. PubMed DOI PMC

Bode A. M.; Dong Z. Post-translational modification of p53 in tumorigenesis. Nature Reviews Cancer 2004, 4, 793–805. 10.1038/nrc1455. PubMed DOI

Buschmann T.; Adler V.; Matusevich E.; Fuchs S. Y.; Ronai Z. p53 phosphorylation and association with murine double minute 2, c-Jun NH2-terminal kinase, p14ARF, and p300/CBP during the cell cycle and after exposure to ultraviolet irradiation. Cancer Res. 2000, 60, 896–900. PubMed

Blaydes J. P.; Hupp T. R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene 1998, 17, 1045–1052. 10.1038/sj.onc.1202014. PubMed DOI

Wallace M.; Coates P.; Wright E.; Ball K. Differential post-translational modification of the tumour suppressor proteins Rb and p53 modulate the rates of radiation-induced apoptosis in vivo. Oncogene 2001, 20, 3597–3608. 10.1038/sj.onc.1204496. PubMed DOI

Finlan L. E.; Nenutil R.; Ibbotson S. H.; Vojtesek B.; Hupp T. R. CK2-site phosphorylation of p53 is induced in ΔNp63 expressing basal stem cells in UVB irradiated human skin. Cell Cycle 2006, 5, 2489–2494. 10.4161/cc.5.21.3393. PubMed DOI

Furihata M.; Kurabayashl A.; Matsumoto M.; Sonobe H.; Ohtsuki Y.; Terao N.; Kuwahara M.; Shuin T. Frequent phosphorylation at serine 392 in overexpressed p53 protein due to missense mutation in carcinoma of the urinary tract. Journal of Pathology 2002, 197, 82–88. 10.1002/path.1082. PubMed DOI

Yap D. B.; Hsieh J.-K.; Zhong S.; Heath V.; Gusterson B.; Crook T.; Lu X. Ser392 phosphorylation regulates the oncogenic function of mutant p53. Cancer research 2004, 64, 4749–4754. 10.1158/0008-5472.CAN-1305-2. PubMed DOI

Castrogiovanni C.; Waterschoot B.; De Backer O.; Dumont P. Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death & Differentiation 2018, 25, 190–203. 10.1038/cdd.2017.143. PubMed DOI PMC

Sakaguchi K.; Sakamoto H.; Lewis M. S.; Anderson C. W.; Erickson J. W.; Appella E.; Xie D. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 1997, 36, 10117–10124. 10.1021/bi970759w. PubMed DOI

Dai Z.; Li G.; Chen Q.; Yang X. Ser392 phosphorylation modulated a switch between p53 and transcriptional condensates. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2022, 1865, 194827.10.1016/j.bbagrm.2022.194827. PubMed DOI

Shamilov R.; Aneskievich B. J. Intrinsic disorder in nuclear receptor amino termini: from investigational challenge to therapeutic opportunity. Nuclear Receptor Research 2019, 6, 1–16. 10.32527/2019/101417. DOI

Kosol S.; Contreras-Martos S.; Cedeño C.; Tompa P. Structural characterization of intrinsically disordered proteins by NMR spectroscopy. Molecules 2013, 18, 10802–10828. 10.3390/molecules180910802. PubMed DOI PMC

Receveur-Bréchot V.; Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Current Protein and Peptide Science 2012, 13, 55–75. 10.2174/138920312799277901. PubMed DOI PMC

Davidov G.; Abelya G.; Zalk R.; Izbicki B.; Shaibi S.; Spektor L.; Shagidov D.; Meyron-Holtz E. G.; Zarivach R.; Frank G. A. Folding of an intrinsically disordered iron-binding peptide in response to sedimentation revealed by cryo-EM. J. Am. Chem. Soc. 2020, 142, 19551–19557. 10.1021/jacs.0c07565. PubMed DOI PMC

Henriques J.; Cragnell C.; Skepo M. Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment. J. Chem. Theory Comput. 2015, 11, 3420–3431. 10.1021/ct501178z. PubMed DOI

Salvi N.; Abyzov A.; Blackledge M. Multi-timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation. journal of physical chemistry letters 2016, 7, 2483–2489. 10.1021/acs.jpclett.6b00885. PubMed DOI

Koder Hamid M.; Månsson L. K.; Meklesh V.; Persson P.; Skepö M. Molecular dynamics simulations of the adsorption of an intrinsically disordered protein: Force field and water model evaluation in comparison with experiments. Frontiers in Molecular Biosciences 2022, 9, 958175.10.3389/fmolb.2022.958175. PubMed DOI PMC

Rieloff E.; Skepö M. Molecular dynamics simulations of phosphorylated intrinsically disordered proteins: A force field comparison. International journal of molecular sciences 2021, 22, 10174.10.3390/ijms221810174. PubMed DOI PMC

Shapiro D. M.; Ney M.; Eghtesadi S. A.; Chilkoti A. Protein phase separation arising from intrinsic disorder: first-principles to bespoke applications. J. Phys. Chem. B 2021, 125, 6740–6759. 10.1021/acs.jpcb.1c01146. PubMed DOI

Bakker M. J.; Mládek A.; Semrád H.; Zapletal V.; Přecechtělová J. P. Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach. Phys. Chem. Chem. Phys. 2022, 24, 27678–27692. 10.1039/D2CP01638A. PubMed DOI

Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2009, 19, 23–30. 10.1016/j.sbi.2008.12.004. PubMed DOI PMC

Basu S.; Biswas P. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2018, 1866, 624–641. 10.1016/j.bbapap.2018.03.002. PubMed DOI

Basu S.; Mukharjee D. Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions. J. Mol. Model. 2017, 23, 1–17. 10.1007/s00894-017-3376-y. PubMed DOI

Adzhubei A. A.; Sternberg M. J.; Makarov A. A. Polyproline-II helix in proteins: structure and function. Journal of molecular biology 2013, 425, 2100–2132. 10.1016/j.jmb.2013.03.018. PubMed DOI

Jephthah S.; Staby L.; Kragelund B.; Skepo M. Temperature dependence of intrinsically disordered proteins in simulations: What are we missing?. J. Chem. Theory Comput. 2019, 15, 2672–2683. 10.1021/acs.jctc.8b01281. PubMed DOI

Rath A.; Davidson A. R.; Deber C. M. The structure of “”unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Peptide Science: Original Research on Biomolecules 2005, 80, 179–185. 10.1002/bip.20227. PubMed DOI

Jephthah S.; Pesce F.; Lindorff-Larsen K.; Skepo M. Force field effects in simulations of flexible peptides with varying polyproline II propensity. J. Chem. Theory Comput. 2021, 17, 6634–6646. 10.1021/acs.jctc.1c00408. PubMed DOI PMC

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. 10.1016/j.softx.2015.06.001. DOI

Pronk S.; Páll S.; Schulz R.; Larsson P.; Bjelkmar P.; Apostolov R.; Shirts M. R.; Smith J. C.; Kasson P. M.; Van Der Spoel D.; Hess B.; Lindahl E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. 10.1093/bioinformatics/btt055. PubMed DOI PMC

Hess B.; Kutzner C.; Van Der Spoel D.; Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. 10.1021/ct700301q. PubMed DOI

Berendsen H. J.; van der Spoel D.; van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer physics communications 1995, 91, 43–56. 10.1016/0010-4655(95)00042-E. DOI

Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; Shaw D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Struct., Funct., Bioinf. 2010, 78, 1950–1958. 10.1002/prot.22711. PubMed DOI PMC

Hanwell M. D.; Curtis D. E.; Lonie D. C.; Vandermeersch T.; Zurek E.; Hutchison G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 2012, 4, 1–17. 10.1186/1758-2946-4-17. PubMed DOI PMC

Campen A.; Williams R. M.; Brown C. J.; Meng J.; Uversky V. N.; Dunker A. K. TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein and peptide letters 2008, 15, 956–963. 10.2174/092986608785849164. PubMed DOI PMC

McGibbon R. T.; Beauchamp K. A.; Harrigan M. P.; Klein C.; Swails J. M.; Hernández C. X.; Schwantes C. R.; Wang L.-P.; Lane T. J.; Pande V. S. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophysical journal 2015, 109, 1528–1532. 10.1016/j.bpj.2015.08.015. PubMed DOI PMC

Manalastas-Cantos K.; Konarev P. V.; Hajizadeh N. R.; Kikhney A. G.; Petoukhov M. V.; Molodenskiy D. S.; Panjkovich A.; Mertens H. D.; Gruzinov A.; Borges C.; et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. Journal of applied crystallography 2021, 54, 343–355. 10.1107/S1600576720013412. PubMed DOI PMC

Shen Y.; Bax A. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. Journal of biomolecular NMR 2010, 48, 13–22. 10.1007/s10858-010-9433-9. PubMed DOI PMC

Schultze S.; Grubmuller H. Time-lagged independent component analysis of random walks and protein dynamics. J. Chem. Theory Comput. 2021, 17, 5766–5776. 10.1021/acs.jctc.1c00273. PubMed DOI PMC

Scherer M. K.; Trendelkamp-Schroer B.; Paul F.; Pérez-Hernández G.; Hoffmann M.; Plattner N.; Wehmeyer C.; Prinz J.-H.; Noé F. PyEMMA 2: A software package for estimation, validation, and analysis of Markov models. J. Chem. Theory Comput. 2015, 11, 5525–5542. 10.1021/acs.jctc.5b00743. PubMed DOI

Virtanen P.; Gommers R.; Oliphant T. E.; Burovski E.; Cournapeau D.; Weckesser W.; Peterson P.; van der Walt S.; Laxalde D.; Brett M.; et al.Scipy/Scipy: Scipy 0.19. 0. Zenodo 2020.

Danial A.Python for MATLAB Development: Extend MATLAB with 300,000+ Modules from the Python Package Index; Springer, 2022; pp 335–492.

Jolly K.Machine learning with scikit-learn quick start guide: classification, regression, and clustering techniques in Python; Packt Publishing Ltd, 2018.

Shahapure K. R.; Nicholas C.. Cluster quality analysis using silhouette score. 2020 IEEE 7th international conference on data science and advanced analytics (DSAA); IEEE, 2020; pp 747–748.

Hoffmann M.; Scherer M.; Hempel T.; Mardt A.; de Silva B.; Husic B. E.; Klus S.; Wu H.; Kutz N.; Brunton S. L.; et al. others Deeptime: a Python library for machine learning dynamical models from time series data. Machine Learning: Science and Technology 2022, 3, 01500910.1088/2632-2153/ac3de0. DOI

Bilal S.; Iqbal H.; Anjum F.; Mir A. Prediction of 3D structure of P2RY5 gene and its mutants via comparative homology modelling. J. Comput. Biol. Bioinforma. Res. 2009, 1, 11–16.

Nikoloudis D.; Pitts J. E.; Saldanha J. W. A complete, multi-level conformational clustering of antibody complementarity-determining regions. PeerJ. 2014, 2, e45610.7717/peerj.456. PubMed DOI PMC

Bandyopadhyay A.; Basu S. Criticality in the conformational phase transition among self-similar groups in intrinsically disordered proteins: Probed by salt-bridge dynamics. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2020, 1868, 140474.10.1016/j.bbapap.2020.140474. PubMed DOI

Rieloff E.; Skepö M. The effect of multisite phosphorylation on the conformational properties of intrinsically disordered proteins. International Journal of Molecular Sciences 2021, 22, 11058.10.3390/ijms222011058. PubMed DOI PMC

Weinberg R. L.; Freund S. M.; Veprintsev D. B.; Bycroft M.; Fersht A. R. Regulation of DNA binding of p53 by its C-terminal domain. Journal of molecular biology 2004, 342, 801–811. 10.1016/j.jmb.2004.07.042. PubMed DOI

Solares M. J.; Kelly D. F. Complete Models of p53 Better Inform the Impact of Hotspot Mutations. International journal of molecular sciences 2022, 23, 15267.10.3390/ijms232315267. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...