Deeper Insight of the Conformational Ensemble of Intrinsically Disordered Proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39056166
PubMed Central
PMC11323008
DOI
10.1021/acs.jcim.4c00941
Knihovny.cz E-zdroje
- MeSH
- difrakce rentgenového záření MeSH
- histatiny * chemie metabolismus MeSH
- konformace proteinů * MeSH
- maloúhlový rozptyl MeSH
- simulace molekulární dynamiky * MeSH
- vnitřně neuspořádané proteiny * chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histatiny * MeSH
- vnitřně neuspořádané proteiny * MeSH
It is generally known that, unlike structured proteins, intrinsically disordered proteins, IDPs, exhibit various structures and conformers, the so-called conformational ensemble, CoE. This study aims to better understand the conformers that make up the IDP ensemble by decomposing the CoE into groups separated by their radius of gyration, Rg. A common approach to studying CoE for IDPs is to use low-resolution techniques, such as small-angle scattering, and combine those with computer simulations on different length scales. Herein, the well-studied antimicrobial saliva protein histatin 5 was utilized as a model peptide for an IDP; the average intensity curves were obtained from small-angle X-ray scattering; and compared with fully atomistic, explicit water, molecular dynamics simulations; then, the intensity curve was decomposed with respect to the different Rg values; and their secondary structure propensities were investigated. We foresee that this approach can provide important information on the CoE and the individual conformers within; in that case, it will serve as an additional tool for understanding the IDP structure-function relationship on a more detailed level.
Zobrazit více v PubMed
Oldfield C. J.; Dunker A. K. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 2014, 83, 553–584. 10.1146/annurev-biochem-072711-164947. PubMed DOI
Tompa P. Intrinsically unstructured proteins. Trends Biochem. Sci. 2002, 27, 527–533. 10.1016/S0968-0004(02)02169-2. PubMed DOI
Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2009, 19, 23–30. 10.1016/j.sbi.2008.12.004. PubMed DOI PMC
Uversky V. N. Unusual biophysics of intrinsically disordered proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2013, 1834, 932–951. 10.1016/j.bbapap.2012.12.008. PubMed DOI
Fisher C. K.; Stultz C. M. Constructing ensembles for intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2011, 21, 426–431. 10.1016/j.sbi.2011.04.001. PubMed DOI PMC
Kachala M.; Valentini E.; Svergun D. I. In Intrinsically Disordered Proteins Studied by NMR Spectroscopy; Felli I. C., Pierattelli R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp 261–289.
Liquid-Liquid Phase Coexistence and Membraneless Organelles; Keating C. D., Ed.; Methods in Enzymology, Vol. 646; Academic Press, 2021; pp 185–222.
Johansen D.; Jeffries C. M. J.; Hammouda B.; Trewhella J.; Goldenberg D. P. Effects of Macromolecular Crowding on an Intrinsically Disordered Protein Characterized by Small-Angle Neutron Scattering with Contrast Matching. Biophys. J. 2011, 100, 1120–1128. 10.1016/j.bpj.2011.01.020. PubMed DOI PMC
Bernado P.; Blackledge M. A Self-Consistent Description of the Conformational Behavior of Chemically Denatured Proteins from NMR and Small Angle Scattering. Biophys. J. 2009, 97, 2839–2845. 10.1016/j.bpj.2009.08.044. PubMed DOI PMC
Cragnell C.; Staby L.; Lenton S.; Kragelund B. B.; Skepö M. Dynamical Oligomerisation of Histidine Rich Intrinsically Disordered Proteins Is Regulated through Zinc-Histidine Interactions. Biomolecules 2019, 9, 168.10.3390/biom9050168. PubMed DOI PMC
Rieloff E.; Tully M. D.; Skepö M. Assessing the Intricate Balance of Intermolecular Interactions upon Self-Association of Intrinsically Disordered Proteins. J. Mol. Biol. 2019, 431, 511–523. 10.1016/j.jmb.2018.11.027. PubMed DOI
Henriques J.; Arleth L.; Lindorff-Larsen K.; Skepö M. On the calculation of SAXS profiles of folded and intrinsically disordered proteins from computer simulations. J. Mol. Biol. 2018, 430, 2521–2539. 10.1016/j.jmb.2018.03.002. PubMed DOI
Bernado P.; Svergun D. I. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Molecular Biosystems 2012, 8, 151–167. 10.1039/C1MB05275F. PubMed DOI
Abraham M. J.; Murtola T.; Schulz R.; Pall S.; Smith J. C.; Hess B.; Lindahl E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684.10.1063/1.448118. DOI
Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J.; Dror R.; Shaw D. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. 10.1002/prot.22711. PubMed DOI PMC
Piana S.; Donchev A. G.; Robustelli P.; Shaw D. E. Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States. J. Phys. Chem. B 2015, 119, 5113–5348. 10.1021/jp508971m. PubMed DOI
Hanwell M. D.; Curtis D. E.; Lonie D. C.; Vandermeersch T.; Zurek E.; Hutchison G. R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics 2012, 4, 17.10.1186/1758-2946-4-17. PubMed DOI PMC
Darden T.; York D.; Pedersen L. Particle mesh Ewald: AnNxlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089.10.1063/1.464397. DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. Journal of Computantional Chemistry 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Evans D. J.; Holian B. L. The Noose-Hover thermostat. J. Chem. Phys. 1985, 83, 4069.10.1063/1.449071. DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182.10.1063/1.328693. DOI
Daura X.; Gademann K.; Jaun B.; Seebach D.; van Gunsteren W. F.; Mark A. E. Peptide Folding: When Simulation Meets Experiment. Angew. Chem. 1999, 38, 236–240. 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M. DOI
Svergun D.; Barberato C.; Koch M. H. J. CRYSOL– a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. J. Appl. Crystallogr. 1995, 28, 768–773. 10.1107/S0021889895007047. DOI
Manalastas-Cantos K.; Konarev P. V.; Hajizadeh N. R.; Kikhney A. G.; Petoukhov M. V.; Molodenskiy D. S.; Panjkovich A.; Mertens H. D. T.; Gruzinov A.; Borges C.; Jeffries C. M.; et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 2021, 54, 343–355. 10.1107/S1600576720013412. PubMed DOI PMC
Hoffmann M.; Scherer M.; Hempel T.; Mardt A.; de Silva B.; Husic B. E.; Klus S.; Wu H.; Kutz N.; Brunton S. L.; et al. Deeptime: a Python library for machine learning dynamical models from time series data. Machine Learning: Science and Technology 2022, 3, 01500910.1088/2632-2153/ac3de0. DOI
Scherer M. K.; Trendelkamp-Schroer B.; Paul F.; Pérez-Hernández G.; Hoffmann M.; Plattner N.; Wehmeyer C.; Prinz J.-H.; Noé F. PyEMMA 2: A software package for estimation, validation, and analysis of Markov models. J. Chem. Theory Comput. 2015, 11, 5525–5542. 10.1021/acs.jctc.5b00743. PubMed DOI
McGibbon R. T.; Beauchamp K. A.; Harrigan M. P.; Klein C.; Swails J. M.; Hernández C. X.; Schwantes C. R.; Wang L.-P.; Lane T. J.; Pande V. S. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 2015, 109, 1528–1532. 10.1016/j.bpj.2015.08.015. PubMed DOI PMC
Bakker M. J.; Svensson O.; Sorensen H. V.; Skepo M. Exploring the Functional Landscape of the p53 Regulatory Domain: The Stabilizing Role of Post-Translational Modifications. J. Chem. Theory Comput. 2024, 20, 5842.10.1021/acs.jctc.4c00570. PubMed DOI PMC
Bakker M. J.; So̷rensen H. V.; Skepo M. Exploring the Role of Globular Domain Locations on an Intrinsically Disordered Region of p53: A Molecular Dynamics Investigation. J. Chem. Theory Comput. 2024, 20, 1423–1433. 10.1021/acs.jctc.3c00971. PubMed DOI PMC
Pearson K. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1900, 50, 157–175. 10.1080/14786440009463897. DOI
Henriques J.; Cragnell C.; Skepö M. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment. J. Chem. Theory Comput. 2015, 11, 3420–3431. 10.1021/ct501178z. PubMed DOI
Jephthah S.; Pesce F.; Lindorff-Larsen K.; Skepö M. Force field effects in simulations of flexible peptides with varying polyproline II propensity. J. Chem. Theory Comput. 2021, 17, 6634–6646. 10.1021/acs.jctc.1c00408. PubMed DOI PMC
Henriques J.; Skepo M. Molecular dynamics simulations of intrinsically disordered proteins: on the accuracy of the TIP4P-D water model and the representativeness of protein disorder models. J. Chem. Theory Comput. 2016, 12, 3407–3415. 10.1021/acs.jctc.6b00429. PubMed DOI
Jephthah S.; Staby L.; Kragelund B.; Skepö M. Temperature dependence of intrinsically disordered proteins in simulations: What are we missing?. J. Chem. Theory Comput. 2019, 15, 2672–2683. 10.1021/acs.jctc.8b01281. PubMed DOI
Cragnell C.; Durand D.; Cabane B.; Skepö M. Coarse-grained modeling of the intrinsically disordered protein Histatin 5 in solution: Monte Carlo simulations in combination with SAXS. Proteins: Struct., Funct., Bioinf. 2016, 84, 777–791. 10.1002/prot.25025. PubMed DOI
Singh H.; Ahmad S. Context dependent reference states of solvent accessibility derived from native protein structures and assessed by predictability analysis. BMC Structural Biology 2009, 9, 25.10.1186/1472-6807-9-25. PubMed DOI PMC