Variants of NAV3, a neuronal morphogenesis protein, cause intellectual disability, developmental delay, and microcephaly
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
R01 NS107428
NINDS NIH HHS - United States
R01NS107428
U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
PubMed
38977784
PubMed Central
PMC11231287
DOI
10.1038/s42003-024-06466-1
PII: 10.1038/s42003-024-06466-1
Knihovny.cz E-resources
- MeSH
- Chlorocebus aethiops MeSH
- COS Cells MeSH
- Zebrafish genetics MeSH
- Child MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Intellectual Disability * genetics MeSH
- Microcephaly * genetics pathology MeSH
- Mice MeSH
- Neurons metabolism pathology MeSH
- Child, Preschool MeSH
- Microtubule-Associated Proteins genetics metabolism MeSH
- Nerve Tissue Proteins genetics metabolism MeSH
- Developmental Disabilities * genetics MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Child, Preschool MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- NAV3 protein, human MeSH Browser
- Microtubule-Associated Proteins MeSH
- Nerve Tissue Proteins MeSH
Microtubule associated proteins (MAPs) are widely expressed in the central nervous system, and have established roles in cell proliferation, myelination, neurite formation, axon specification, outgrowth, dendrite, and synapse formation. We report eleven individuals from seven families harboring predicted pathogenic biallelic, de novo, and heterozygous variants in the NAV3 gene, which encodes the microtubule positive tip protein neuron navigator 3 (NAV3). All affected individuals have intellectual disability (ID), microcephaly, skeletal deformities, ocular anomalies, and behavioral issues. In mouse brain, Nav3 is expressed throughout the nervous system, with more prominent signatures in postmitotic, excitatory, inhibiting, and sensory neurons. When overexpressed in HEK293T and COS7 cells, pathogenic variants impaired NAV3 ability to stabilize microtubules. Further, knocking-down nav3 in zebrafish led to severe morphological defects, microcephaly, impaired neuronal growth, and behavioral impairment, which were rescued with co-injection of WT NAV3 mRNA and not by transcripts encoding the pathogenic variants. Our findings establish the role of NAV3 in neurodevelopmental disorders, and reveal its involvement in neuronal morphogenesis, and neuromuscular responses.
Alexander von Humboldt Fellowship Foundation Berlin 10117 Germany
Centre of Excellence in Molecular Biology University of the Punjab Lahore Pakistan
Department of Medical Genetics Oslo University Hospital and University of Oslo Oslo Norway
Department of Medical Genetics University of Calgary Calgary Alberta Canada
Department of Pediatrics CHU de Nice Fondation Lenval Nice France
Institute for Medical Genetics and Applied Genomics University of Tübingen Tübinge 72076 Germany
Institute of Human Genetics Technical University of Munich School of Medicine Munich Germany
Institute of Neurogenomics Helmholtz Munich Neuherberg Germany
Nantes Université CHU Nantes Service de Génétique Médicale 44000 Nantes France
National Center of Genetics 1 rue Louis Rech L 3555 Dudelange Luxembourg
See more in PubMed
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell. Mol. Life Sci. 2016;73:2053–2077. doi: 10.1007/s00018-016-2168-3. PubMed DOI PMC
Kumar P, Wittmann T. +TIPs: SxIPping along microtubule ends. Trends Cell Biol. 2012;22:418–428. doi: 10.1016/j.tcb.2012.05.005. PubMed DOI PMC
Honnappa S, et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell. 2009;138:366–376. doi: 10.1016/j.cell.2009.04.065. PubMed DOI
Cohen‐Dvashi H, et al. Navigator‐3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol. Med. 2015;7:299–314. doi: 10.15252/emmm.201404134. PubMed DOI PMC
Stringham, E., Pujol, N., Vandekerckhove, J. & Bogaert, T. unc-53 controls longitudinal migration in C. elegans. Development129, 3367–3379 (2002). PubMed
Martínez-López MJ, et al. Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration. Mol. Cell. Neurosci. 2005;28:599–612. doi: 10.1016/j.mcn.2004.09.016. PubMed DOI
Accogli A, et al. Loss of neuron navigator 2 impairs brain and cerebellar development. Cerebellum. 2023;22:206–222. doi: 10.1007/s12311-022-01379-3. PubMed DOI PMC
Peeters PJ, et al. Sensory deficits in mice hypomorphic for a mammalian homologue of unc-53. Dev. Brain Res. 2004;150:89–101. doi: 10.1016/j.devbrainres.2004.03.004. PubMed DOI
Maes T, Barceló A, Buesa C. Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics. 2002;80:21–30. doi: 10.1006/geno.2002.6799. PubMed DOI
Coy JF, et al. Pore membrane and/or filament interacting like protein 1 (POMFIL1) is predominantly expressed in the nervous system and encodes different protein isoforms. Gene. 2002;290:73–94. doi: 10.1016/S0378-1119(02)00567-X. PubMed DOI
Lv F, et al. Neuron navigator 3 (NAV3) is required for heart development in zebrafish. Fish. Physiol. Biochem. 2022;48:173–183. doi: 10.1007/s10695-022-01049-5. PubMed DOI
Klein C, et al. Neuron navigator 3a regulates liver organogenesis during zebrafish embryogenesis. Development. 2011;138:1935–1945. doi: 10.1242/dev.056861. PubMed DOI PMC
Zhou X, et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 2022;54:1305–1319. doi: 10.1038/s41588-022-01148-2. PubMed DOI PMC
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 2015;36:928–930. doi: 10.1002/humu.22844. PubMed DOI PMC
Karczewski KJ, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC
Mueller T, Wullimann MF. Expression domains of neuroD (nrd) in the early postembryonic zebrafish brain. Brain Res. Bull. 2002;57:377–379. doi: 10.1016/S0361-9230(01)00694-3. PubMed DOI
Kurolap A, et al. Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity. Am. J. Hum. Genet. 2022;109:518–532. doi: 10.1016/j.ajhg.2022.01.004. PubMed DOI PMC
Tsai P, Shinar S. Agenesis of the corpus callosum: What to tell expecting parents? Prenat. Diagn. 2023;43:1527–1535. doi: 10.1002/pd.6447. PubMed DOI
Barth PG. Disorders of neuronal migration. Can. J. Neurol. Sci. 1987;14:1–16. doi: 10.1017/S031716710002610X. PubMed DOI
Prasad T, Iyer S, Chatterjee S, Kumar M. In vivo models to study neurogenesis and associated neurodevelopmental disorders—Microcephaly and autism spectrum disorder. WIREs Mech. Dis. 2023;15:e1603. doi: 10.1002/wsbm.1603. PubMed DOI
Papaioannou G, Garel C. The fetal brain: migration and gyration anomalies—pre-and postnatal correlations. Pediatr. Radiol. 2023;53:589–601. doi: 10.1007/s00247-022-05458-9. PubMed DOI
Kahn OI, Baas PW. Microtubules and growth cones: motors drive the turn. Trends Neurosci. 2016;39:433–440. doi: 10.1016/j.tins.2016.04.009. PubMed DOI PMC
Yang K-M, et al. Co-chaperone BAG2 determines the pro-oncogenic role of cathepsin B in triple-negative breast cancer cells. Cell Rep. 2017;21:2952–2964. doi: 10.1016/j.celrep.2017.11.026. PubMed DOI
van Haren J, et al. Mammalian Navigators are microtubule plus‐end tracking proteins that can reorganize the cytoskeleton to induce neurite‐like extensions. Cell Motil. Cytoskeleton. 2009;66:824–838. doi: 10.1002/cm.20370. PubMed DOI
Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods. 2014;11:361–362. doi: 10.1038/nmeth.2890. PubMed DOI
Robinson PN, et al. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet. 2008;83:610–615. doi: 10.1016/j.ajhg.2008.09.017. PubMed DOI PMC
Riazuddin S, et al. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Mol. Psychiatry. 2017;22:1604–1614. doi: 10.1038/mp.2016.109. PubMed DOI PMC
Adzhubei IA, et al. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248. PubMed DOI PMC
Ioannidis NM, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 2016;99:877–885. doi: 10.1016/j.ajhg.2016.08.016. PubMed DOI PMC
Jagadeesh KA, et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat. Genet. 2016;48:1581–1586. doi: 10.1038/ng.3703. PubMed DOI
Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13:1–12. doi: 10.1186/s13073-021-00835-9. PubMed DOI PMC
Kopanos C, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978. doi: 10.1093/bioinformatics/bty897. PubMed DOI PMC
Wiel L, et al. MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum. Mutat. 2019;40:1030–1038. PubMed PMC
Silk M, Petrovski S, Ascher DB. MTR-Viewer: identifying regions within genes under purifying selection. Nucleic Acids Res. 2019;47:W121–W126. doi: 10.1093/nar/gkz457. PubMed DOI PMC
Madeira F, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50:W276–W279. doi: 10.1093/nar/gkac240. PubMed DOI PMC
Cao J, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566:496–502. doi: 10.1038/s41586-019-0969-x. PubMed DOI PMC
Speir ML, et al. UCSC Cell Browser: visualize your single-cell data. Bioinformatics. 2021;37:4578–4580. doi: 10.1093/bioinformatics/btab503. PubMed DOI PMC
Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–W181. doi: 10.1093/nar/gkv342. PubMed DOI PMC
Schrodinger, L. The AxPyMOL molecular graphics plugin for Microsoft PowerPoint, version 1.8. (Schrödinger, LLC, New York, NY, 2015).
Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform. 2010;11:1–10. doi: 10.1186/1471-2105-11-548. PubMed DOI PMC