Large language models are changing landscape of academic publications. A positive transformation?
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
38981715
PII: 136673
Knihovny.cz E-zdroje
- Klíčová slova
- large language models (LLMs), neural networks, academic writing, artificial intelligence, transformer architecture, scientific research automation, publishing ethics, detection of AI-generated text,
- MeSH
- jazyk (prostředek komunikace) MeSH
- lidé MeSH
- neuronové sítě * MeSH
- publikování etika MeSH
- zpracování přirozeného jazyka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The advent of large language models (LLMs) based on neural networks marks a significant shift in academic writing, particularly in medical sciences. These models, including OpenAI's GPT-4, Google's Bard, and Anthropic's Claude, enable more efficient text processing through transformer architecture and attention mechanisms. LLMs can generate coherent texts that are indistinguishable from human-written content. In medicine, they can contribute to the automation of literature reviews, data extraction, and hypothesis formulation. However, ethical concerns arise regarding the quality and integrity of scientific publications and the risk of generating misleading content. This article provides an overview of how LLMs are changing medical writing, the ethical dilemmas they bring, and the possibilities for detecting AI-generated text. It concludes with a focus on the potential future of LLMs in academic publishing and their impact on the medical community.