Backward neural network (BNN) based multilevel control for enhancing the quality of an islanded RES DC microgrid under variable communication network
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38988525
PubMed Central
PMC11233949
DOI
10.1016/j.heliyon.2024.e32646
PII: S2405-8440(24)08677-8
Knihovny.cz E-zdroje
- Klíčová slova
- Backward NN, Communication latencies, Distributed control, Multi-level control, NN microgrid control, Renewable energy sources,
- Publikační typ
- časopisecké články MeSH
Microgrids (MGs) and energy communities have been widely implemented, leading to the participation of multiple stakeholders in distribution networks. Insufficient information infrastructure, particularly in rural distribution networks, is leading to a growing number of operational blind areas in distribution networks. An optimization challenge is addressed in multi-feeder microgrid systems to handle load sharing and voltage management by implementing a backward neural network (BNN) as a robust control approach. The control technique consists of a neural network that optimizes the control strategy to calculate the operating directions for each distributed generating point. Neural networks improve control during communication connectivity issues to ensure the computation of operational directions. Traditional control of DC microgrids is susceptible to communication link delays. The proposed BNN technique can be expanded to encompass the entire multi-feeder network for precise load distribution and voltage management. The BNN results are achieved through mathematical analysis of different load conditions and uncertain line characteristics in a radial network of a multi-feeder microgrid, demonstrating the effectiveness of the proposed approach. The proposed BNN technique is more effective than conventional control in accurately distributing the load and regulating the feeder voltage, especially during communication failure.
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
Department of Electrical Engineering Sukkur IBA University Sukkur 65200 Pakistan
ENET Centre VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Zobrazit více v PubMed
Gao Y., Doppelbauer M., Ou J., Qu R. Design of a double-side flux modulation permanent magnet machine for servo application. IEEE J. Emerg. Sel. Top. Power Electron. 2022;10:1671–1682. doi: 10.1109/JESTPE.2021.3105557. DOI
Xiao S., Wang Z., Wu G., Guo Y., Gao G., Zhang X., Cao Y., Zhang Y., Yu J., Liu P., et al. The impact analysis of operational overvoltage on traction transformers for high-speed trains based on the improved capacitor network methodology. IEEE Trans. Transp. Electrif. 2023;1 doi: 10.1109/TTE.2023.3283668. DOI
Lotfi H., Khodaei A. AC versus DC microgrid planning. IEEE Trans. Smart Grid. 2017;8:296–304. doi: 10.1109/TSG.2015.2457910. DOI
Kan N.H., Kanjiya P., Zeineldin H.H., Xiao W., Kirtley J.L. A modified control topology to improve stability margins in micro-grids with droop controlled IBDG. Renew. Power Gener. Conf. (RPG 2014) 2014:1–7. doi: 10.1049/cp.2014.0862. DOI
Standards Coordinating Committee, I.; Fuel Cells, on; Generation, D.; Storage, E. sponsored by the IEEE standards coordinating committee 21 on fuel cells, photovoltaics, dispersed generation, Energy Storage IEEE Stan; 2011. IEEE guide for design, operation, and integration of distributed resource island systems with electric power systems; pp. 1–42. DOI
Hashmi K., Khan M.M., Jiang H., Shahid M.U., Habib S., Faiz M.T., Tang H. A quasi-average estimation aided hierarchical control scheme for power electronics-based islanded microgrids. Electronics. 2019;8:39. doi: 10.3390/electronics8010039. DOI
Li X., Li P., Ge L., Wang X., Li Z., Zhu L., Guo L., Wang C. A unified control of super-capacitor system based on Bi-directional DC-DC converter for power smoothing in DC microgrid. J. Mod. Power Syst. Clean Energy. 2023;11:938–949. doi: 10.35833/MPCE.2021.000549. DOI
Liao K., Lu D., Wang M., Yang J. A low-pass virtual filter for output power smoothing of wind energy conversion systems. IEEE Trans. Ind. Electron. 2022;69:12874–12885. doi: 10.1109/TIE.2021.3139177. DOI
Li P., Hu J., Qiu L., Zhao Y., Ghosh B.K. A distributed economic dispatch strategy for power–water networks. IEEE trans. Control Netw. Syst. 2022;9:356–366. doi: 10.1109/TCNS.2021.3104103. DOI
Ding Z., Wu X., Chen C., Yuan X. Magnetic field analysis of surface-mounted permanent magnet motors based on an improved conformal mapping method. IEEE Trans. Ind. Appl. 2023;59:1689–1698. doi: 10.1109/TIA.2022.3228509. DOI
Sun Q., Lyu G., Liu X., Niu F., Gan C. Virtual current compensation-based Quasi-sinusoidal-wave excitation scheme for switched reluctance motor drives. IEEE Trans. Ind. Electron. 2023:1–11. doi: 10.1109/TIE.2023.3333056. DOI
Zhang L., Yin Q., Zhu W., Lyu L., Jiang L., Koh L.H., Cai G. Research on the orderly charging and discharging mechanism of electric vehicles considering travel characteristics and Carbon Quota. IEEE Trans. Transp. Electrif. 2023;1 doi: 10.1109/TTE.2023.3296964. DOI
Hasan S., Zeyad M., Ahmed S.M.M., Mahmud D.M., Anubhove M.S.T., Hossain E. Techno-economic feasibility analysis of an electric vehicle charging station for an international airport in Chattogram, Bangladesh. Energy Convers. Manag. 2023;293 doi: 10.1016/j.enconman.2023.117501. DOI
Bunker K.J., Weaver W.W. Multidimensional droop control for wind resources in Dc microgrids. IET Gener. Transm. Distrib. 2017;11:657–664. doi: 10.1049/iet-gtd.2016.0447. DOI
Behjati H., Davoudi A., Lewis F. Modular DC-DC converters on graphs: cooperative control. IEEE Trans. Power Electron. 2014;29:6725–6741. doi: 10.1109/TPEL.2014.2303192. DOI
Habib S., Khan M.M., Abbas F., Sang L., Shahid M.U., Tang H. A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access. 2018;6:13866–13890. doi: 10.1109/ACCESS.2018.2812303. DOI
Xie X., Sun Y. A piecewise probabilistic harmonic power flow approach in unbalanced residential distribution systems. Int. J. Electr. Power Energy Syst. 2022;141 doi: 10.1016/j.ijepes.2022.108114. DOI
Fu Z., He X., Liu P., Palizban A., Liao W. Distributed neural network and Particle swarm optimization for micro-grid adaptive power allocation. Neural Process. Lett. 2022;54:3215–3233. doi: 10.1007/s11063-022-10760-6. DOI
Vuyyuru U., Maiti S., Chakraborty C., Batzelis E.I. Universal active power control converter for DC-microgrids with common energy storage. IEEE Open J. Ind. Appl. 2021;2:21–35. doi: 10.1109/OJIA.2021.3063625. DOI
Liu S., Liu C. Direct harmonic current control scheme for dual three-phase PMSM drive system. IEEE Trans. Power Electron. 2021;36:11647–11657. doi: 10.1109/TPEL.2021.3069862. DOI
Wang H., Wu X., Zheng X., Yuan X. Model predictive current control of nine-phase open-end winding PMSMs with an online virtual vector synthesis strategy. IEEE Trans. Ind. Electron. 2023;70:2199–2208. doi: 10.1109/TIE.2022.3174241. DOI
Shen Y., Xie J., He T., Yao L., Xiao Y. CEEMD-fuzzy control energy management of hybrid energy storage systems in electric vehicles. IEEE Trans. Energy Convers. 2023:1–12. doi: 10.1109/TEC.2023.3306804. DOI
Sha C., Luo J., Ziabari M.T. A new robust decentralized approach based on adaptive fuzzy backstepping method for microgrid secondary voltage control. Sustain. Energy, Grids Networks. 2021;27 doi: 10.1016/j.segan.2021.100487. DOI
Xu B., Guo Y. A novel DVL calibration method based on robust invariant extended Kalman Filter. IEEE Trans. Veh. Technol. 2022;71:9422–9434. doi: 10.1109/TVT.2022.3182017. DOI
Moayedi S., Davoudi A. Distributed tertiary control of DC microgrid Clusters. IEEE Trans. Power Electron. 2016;31:1717–1733. doi: 10.1109/TPEL.2015.2424672. DOI
Khan A., Khan M.M., Li Y., Chuanwen J., Shahid M.U., Khan I. A robust control scheme for voltage and reactive power regulation in islanded AC microgrids. Elec. Power Syst. Res. 2022;210 doi: 10.1016/J.EPSR.2022.108179. DOI
Zhang X., Lu Z., Yuan X., Wang Y., Shen X. L2-Gain adaptive robust control for hybrid energy storage system in electric vehicles. IEEE Trans. Power Electron. 2021;36:7319–7332. doi: 10.1109/TPEL.2020.3041653. DOI
Hossain M.S., Madlool N.A., Rahim N.A., Selvaraj J., Pandey A.K., Khan A.F. Role of smart grid in renewable energy: an overview. Renew. Sustain. Energy Rev. 2016;60:1168–1184. doi: 10.1016/j.rser.2015.09.098. DOI
Barati F., Ahmadi B., Keysan O. A hierarchical control of supercapacitor and microsources in islanded DC microgrids. IEEE Access. 2023;11:7056–7066. doi: 10.1109/ACCESS.2023.3237684. DOI
Lu X., Guerrero J.M., Sun K., Vasquez J.C. An improved droop control method for Dc microgrids based on low bandwidth communication with Dc bus voltage restoration and enhanced current sharing accuracy. IEEE Trans. Power Electron. 2014;29:1800–1812. doi: 10.1109/TPEL.2013.2266419. DOI
Liu S., Liu C. Virtual-vector-based robust predictive current control for dual three-phase PMSM. IEEE Trans. Ind. Electron. 2021;68:2048–2058. doi: 10.1109/TIE.2020.2973905. DOI
Lewis F.L., Qu Z., Davoudi A., Bidram A. Secondary control of microgrids based on distributed cooperative control of multi-agent systems. IET Gener. Transm. Distrib. 2013;7:822–831. doi: 10.1049/iet-gtd.2012.0576. DOI
Hasan S., Zeyad M., Ahmed S.M.M., Anubhove M.S.T. Optimization and planning of renewable energy sources based microgrid for a residential complex. Environ. Prog. Sustain. Energy. 2023;42:1–11. doi: 10.1002/ep.14124. DOI
Nasirian V., Member S., Moayedi S., Member S., Davoudi A., Lewis F.L. Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron. 2015;30:2288–2303.
Lee Z., Zhu S., Zheng J., Choi D.H., Wei L. vol. 47. IFAC; 2014. Research on dynamic process of DC micro-grid under hierarchical control; pp. 4560–4564. (Proceedings of the IFAC Proceedings Volumes).
Hu T., Khan M.M., Xu K., Zhou L., Rana A. Design of an input-parallel output-parallel multi-module DC-DC converter using a ring communication structure. J. Power Electron. 2015;15:886–898. doi: 10.6113/JPE.2015.15.4.886. DOI
Al-Ismail F.S. DC microgrid planning, operation, and control: a comprehensive review. IEEE Access. 2021;9:36154–36172. doi: 10.1109/ACCESS.2021.3062840. DOI
Oliveira T.R., Gonçalves Silva W.W.A., Donoso-Garcia P.F. Distributed secondary level control for energy storage management in DC microgrids. IEEE Trans. Smart Grid. 2017;8:2597–2607. doi: 10.1109/TSG.2016.2531503. DOI
Kong L., Nian H. Transient modeling method for faulty DC microgrid considering control effect of DC/AC and DC/DC converters. IEEE Access. 2020;8:150759–150772. doi: 10.1109/ACCESS.2020.3017015. DOI
Kang W., Li Q., Gao M., Li X., Wang J., Xu R., Chen M. Distributed secondary control method for islanded microgrids with communication constraints. IEEE Access. 2017;13(1):1. doi: 10.1109/ACCESS.2017.2762356. DOI
Voravit Tanyingyong, Robert Olsson, Jeong-woo Cho, Markus Hidell, P.S.S. IoT-Grid: IoT Communication for Smart DC Grids; ISBN 9781509013289.
Lewis F.L., Zhang H., Hengster-Movric K., Das A. 01 ed. Springer; London: 2014. Cooperative Control of Multi-Agent Systems. 978-1-4471-5573-7.
Meng L., Shafiee Q., Trecate G.F., Karimi H., Fulwani D., Lu X., Guerrero J.M. Review on control of DC microgrids and multiple microgrid clusters. IEEE J. Emerg. Sel. Top. Power Electron. 2017;5:928–948. doi: 10.1109/JESTPE.2017.2690219. DOI
Hug G., Kar S., Wu C. Consensus + innovations approach for distributed multiagent coordination in a microgrid. IEEE Trans. Smart Grid. 2015;6:1893–1903. doi: 10.1109/TSG.2015.2409053. DOI
Shahid M.U., Alquthami T., Siddique A., Munir H.M., Abbas S., Abbas Z. Res based islanded Dc microgrid with enhanced electrical network islanding detection. Energies. 2021;14 doi: 10.3390/en14248432. DOI
Kumar S., Das N., Islam S. Proceedings of the Proceedings of the 2016 Australasian Universities Power Engineering Conference. AUPEC; 2016; 2016. Performance monitoring of a PMU in a microgrid environment based on IEC 61850-90-5; pp. 1–5.
Dou C., Yue D., Guerrero J.M., Xie X., Hu S. Multiagent system-based distributed coordinated control for radial DC microgrid considering transmission time delays. IEEE Trans. Smart Grid. 2016;8:2370–2381. doi: 10.1109/TSG.2016.2524688. DOI
Hare J., Shi X., Gupta S., Bazzi A. Fault diagnostics in smart micro-grids: a survey. Renew. Sustain. Energy Rev. 2016;60:1114–1124. doi: 10.1016/j.rser.2016.01.122. DOI
Mah D., Hills P., Li V.O.K. In: Smart Grid Applications and Developments. 01 ed. Mah D., Hills P., Li V.O.K., Balme R., editors. 2014. 978-1-4471-6280-3.
Shahid M.U., Khan M.M., Yuning J., Hashmi K., Mumtaz M.A., Khan M.Z., Tang H. An adaptive droop technique for load sharing in islanded DC micro grid with faulty communication. EPE J. (European Power Electron. Drives Journal) 2021;00:1–15. doi: 10.1080/09398368.2021.1952724. DOI
Konara K.M.S.Y., Kolhe M.L., Charging Management of Grid Integrated Battery for Overcoming the Intermittency of RE Sources; ISBN 9781509061327.
Shantanu Kumar, Member, IEEE, Narottam Das, Senior Member, IEEE, and Syed Islam, Senior Member, I. High Performance Communication Redundancy in a Digital Substation Based on IEC 62439-3 with a Station Bus Configuration.
Shahid M.U., Mansoor Khan M., Hashmi K., Boudina R., Khan A., Yuning J., Tang H. Renewable energy source (RES)based islanded DC microgrid with enhanced resilient control. Int. J. Electr. Power Energy Syst. 2019;113:461–471. doi: 10.1016/j.ijepes.2019.05.069. DOI
Shahid M.U., Khan M.M., Hashmi K., Faiz M.T., Hussain I., Liang J., Tang H. A distributed average-based enhanced resilient control for sustainable energy DC microgrids. Elec. Power Syst. Res. 2020;186 doi: 10.1016/j.epsr.2020.106420. DOI
Cheng B., Zhu D., Zhao S., Chen J. Situation-aware IoT service coordination using the event-driven SOA paradigm. IEEE Trans. Netw. Serv. Manag. 2016;13:349–361. doi: 10.1109/TNSM.2016.2541171. DOI
Li A., Masouros C., Vucetic B., Li Y., Swindlehurst A.L. Interference exploitation precoding for multi-level modulations: closed-form solutions. IEEE Trans. Commun. 2021;69:291–308. doi: 10.1109/TCOMM.2020.3031616. DOI
Lu Y., Tan C., Ge W., Zhao Y., Wang G. Adaptive disturbance observer-based improved super-twisting sliding mode control for electromagnetic direct-drive pump. Smart Mater. Struct. 2023;32 doi: 10.1088/1361-665X/aca84e. DOI
Zheng W., Gong G., Tian J., Lu S., Wang R., Yin Z., Li X., Yin L. Design of a modified transformer architecture based on relative position coding. Int. J. Comput. Intell. Syst. 2023;16:168. doi: 10.1007/s44196-023-00345-z. DOI
Tirdad K. 2010. Developing Pseudo Random Number Generator Based on Neural Networks and Neurofuzzy Systems.
Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature. 1986;323:533–536. doi: 10.1038/323533a0. DOI
Agggarwal C.C. 2018. Neural Networks and Deep Learning. 9783319944623.
Chen C., Wu X., Yuan X., Zheng X. A new technique for the Subdomain method in predicting electromagnetic performance of surface-mounted permanent magnet motors with shaped magnets and a quasi-regular polygon rotor core. IEEE Trans. Energy Convers. 2023;38:1396–1409. doi: 10.1109/TEC.2022.3217042. DOI
Shen Y., Liu D., Liang W., Zhang X. Current reconstruction of three-phase voltage source inverters considering current ripple. IEEE Trans. Transp. Electrif. 2023;9:1416–1427. doi: 10.1109/TTE.2022.3199431. DOI
Mesbahi M., Egerstedt M. Princeton University Press; 2010. Graph Theoretic Methods in Multiagent Networks Book.
Char, J.P. Circuit, Cutset and Path Enumeration, and Other Applications of Edge-Numbering Convention;.
Char, J.P. Generation and Realisation of Loop and Cutsets;.
Lu X., Yu X., Lai J., Guerrero J.M., Zhou H. Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links. IEEE Trans. Ind. Inf. 2016;13:448–460. doi: 10.1109/TII.2016.2603844. DOI