FAM110A promotes mitotic spindle formation by linking microtubules with actin cytoskeleton
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5102
European Union - Next Generation EU
19-27477X
Akademie Věd České Republiky (CAS)
LM2023050
Ministry of Education, Youth and Sports
GR 2111/10-1
Deutsche Forschungsgemeinschaft (DFG)
PubMed
38995965
PubMed Central
PMC11260166
DOI
10.1073/pnas.2321647121
Knihovny.cz E-zdroje
- Klíčová slova
- actin, microtubules, mitosis, mitotic spindle, protein kinase,
- MeSH
- aktiny metabolismus MeSH
- aparát dělícího vřeténka * metabolismus MeSH
- HeLa buňky MeSH
- kasein kinasa I metabolismus genetika MeSH
- lidé MeSH
- mikrofilamenta * metabolismus MeSH
- mikrotubuly * metabolismus MeSH
- mitóza * MeSH
- proteiny buněčného cyklu metabolismus genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny MeSH
- FAM110A protein, human MeSH Prohlížeč
- kasein kinasa I MeSH
- proteiny buněčného cyklu MeSH
Precise segregation of chromosomes during mitosis requires assembly of a bipolar mitotic spindle followed by correct attachment of microtubules to the kinetochores. This highly spatiotemporally organized process is controlled by various mitotic kinases and molecular motors. We have recently shown that Casein Kinase 1 (CK1) promotes timely progression through mitosis by phosphorylating FAM110A leading to its enrichment at spindle poles. However, the mechanism by which FAM110A exerts its function in mitosis is unknown. Using structure prediction and a set of deletion mutants, we mapped here the interaction of the N- and C-terminal domains of FAM110A with actin and tubulin, respectively. Next, we found that the FAM110A-Δ40-61 mutant deficient in actin binding failed to rescue defects in chromosomal alignment caused by depletion of endogenous FAM110A. Depletion of FAM110A impaired assembly of F-actin in the proximity of spindle poles and was rescued by expression of the wild-type FAM110A, but not the FAM110A-Δ40-61 mutant. Purified FAM110A promoted binding of F-actin to microtubules as well as bundling of actin filaments in vitro. Finally, we found that the inhibition of CK1 impaired spindle actin formation and delayed progression through mitosis. We propose that CK1 and FAM110A promote timely progression through mitosis by mediating the interaction between spindle microtubules and filamentous actin to ensure proper mitotic spindle formation.
Centre for Integrative Biological Signaling Studies University of Freiburg Freiburg 79104 Germany
Institute of Biotechnology Czech Academy of Sciences Biocev Vestec CZ25250 Czech Republic
Zobrazit více v PubMed
Musacchio A., The molecular biology of spindle assembly checkpoint signaling dynamics. Curr. Biol. 25, R1002–1018 (2015). PubMed
Kunda P., Baum B., The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. 19, 174–179 (2009). PubMed
Pollard T. D., O’Shaughnessy B., Molecular mechanism of cytokinesis. Annu. Rev. Biochem. 88, 661–689 (2019). PubMed PMC
Lu H., et al. , Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis. PLoS ONE 9, e102547 (2014). PubMed PMC
Dogterom M., Koenderink G. H., Actin-microtubule crosstalk in cell biology. Nat. Rev. Mol. Cell Biol. 20, 38–54 (2019). PubMed
Sandquist J. C., Kita A. M., Bement W. M., And the dead shall rise: Actin and myosin return to the spindle. Dev. Cell 21, 410–419 (2011). PubMed PMC
Farina F., et al. , The centrosome is an actin-organizing centre. Nat. Cell Biol. 18, 65–75 (2016). PubMed PMC
Farina F., et al. , Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J. 38, e99843 (2019). PubMed PMC
Inoue D., et al. , Actin filaments regulate microtubule growth at the centrosome. EMBO J. 38, e99630 (2019). PubMed PMC
Obino D., et al. , Actin nucleation at the centrosome controls lymphocyte polarity. Nat. Commun. 7, 10969 (2016). PubMed PMC
Colin A., Singaravelu P., Théry M., Blanchoin L., Gueroui Z., Actin-network architecture regulates microtubule dynamics. Curr. Biol. 28, 2647–2656.e2644 (2018). PubMed
Plessner M., Knerr J., Grosse R., Centrosomal actin assembly is required for proper mitotic spindle formation and chromosome congression. iScience 15, 274–281 (2019). PubMed PMC
Baarlink C., et al. , A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat. Cell Biol. 19, 1389–1399 (2017). PubMed
Caridi C. P., et al. , Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559, 54–60 (2018). PubMed PMC
Schrank B. R., et al. , Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 559, 61–66 (2018). PubMed PMC
Knerr J., et al. , Formin-mediated nuclear actin at androgen receptors promotes transcription. Nature 617, 616–622 (2023). PubMed
Stiff T., et al. , Prophase-specific perinuclear actin coordinates centrosome separation and positioning to ensure accurate chromosome segregation. Cell Rep. 31, 107681 (2020). PubMed PMC
Booth A. J. R., et al. , Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis. eLife 8, e46902 (2019). PubMed PMC
Davidson P. M., Cadot B., Actin on and around the nucleus. Trends Cell Biol. 31, 211–223 (2021). PubMed
Aquino Perez C., Burocziova M., Jenikova G., Macurek L., CK1-mediated phosphorylation of FAM110A promotes its interaction with mitotic spindle and controls chromosomal alignment. EMBO Rep. 22, e51847 (2021). PubMed PMC
van Heesbeen R. G., Tanenbaum M. E., Medema R. H., Balanced activity of three mitotic motors is required for bipolar spindle assembly and chromosome segregation. Cell Rep. 8, 948–956 (2014). PubMed
Rodgers N. C., et al. , CLASP2 facilitates dynamic actin filament organization along the microtubule lattice. Mol. Biol. Cell 34, br3 (2023). PubMed PMC
Tsvetkov A. S., Samsonov A., Akhmanova A., Galjart N., Popov S. V., Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell Motil. Cytoskeleton 64, 519–530 (2007). PubMed
Badura L., et al. , An inhibitor of casein kinase I ε induces phase delays in circadian rhythms under free-running and entrained conditions. J. Pharmacol. Exp. Ther. 322, 730–738 (2007). PubMed
Schuh M., Ellenberg J., A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–1992 (2008). PubMed
Azoury J., et al. , Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18, 1514–1519 (2008). PubMed
Weber K. L., Sokac A. M., Berg J. S., Cheney R. E., Bement W. M., A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329 (2004). PubMed
Mogessie B., Schuh M., Actin protects mammalian eggs against chromosome segregation errors. Science 357, eaal1647 (2017). PubMed
Gawadi N., Actin in the mitotic spindle. Nature 234, 410 (1971). PubMed
Sanger J. W., Presence of actin during chromosomal movement. Proc. Natl. Acad. Sci. U.S.A. 72, 2451–2455 (1975). PubMed PMC
Cande W. Z., Lazarides E., McIntosh J. R., A comparison of the distribution of actin and tubulin in the mammalian mitotic spindle as seen by indirect immunofluorescence. J. Cell Biol. 72, 552–567 (1977). PubMed PMC
Aubin J. E., Weber K., Osborn M., Analysis of actin and microfilament-associated proteins in the mitotic spindle and cleavage furrow of PtK2 cells by immunofluorescence microscopy. A critical note. Exp. Cell Res. 124, 93–109 (1979). PubMed
Barak L. S., Nothnagel E. A., DeMarco E. F., Webb W. W., Differential staining of actin in metaphase spindles with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and fluorescent DNase: Is actin involved in chromosomal movement? Proc. Natl. Acad. Sci. U.S.A. 78, 3034–3038 (1981). PubMed PMC
Kita A. M., et al. , Spindle-F-actin interactions in mitotic spindles in an intact vertebrate epithelium. Mol. Biol. Cell 30, 1645–1654 (2019). PubMed PMC
Woolner S., O’Brien L. L., Wiese C., Bement W. M., Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182, 77–88 (2008). PubMed PMC
Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R., Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290, 11209–11216 (2015). PubMed PMC
Hinojosa L. S., Holst M., Baarlink C., Grosse R., MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion. J. Cell Biol. 216, 3087–3095 (2017). PubMed PMC
Fink G., et al. , The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat. Cell Biol. 11, 717–723 (2009). PubMed
Castoldi M., Popov A. V., Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expression Purif. 32, 83–88 (2003). PubMed
Nitzsche B., et al. , Studying kinesin motors by optical 3D-nanometry in gliding motility assays. Methods Cell Biol. 95, 247–271 (2010). PubMed
Aquino-Perez C., Macurek L., from Data. “FAM110A promotes mitotic spindle formation by linking microtubules with actin cytoskeleton.” BioStudies. https://www.ebi.ac.uk/biostudies/studies/S-BSST1461. Deposited 27 June 2024. PubMed PMC
FAM110A promotes mitotic spindle formation by linking microtubules with actin cytoskeleton