Enhancing the Electrochemical Activity of 2D Materials Edges through Oriented Electric Fields

. 2024 Jul 16 ; 18 (30) : 19828-35. [epub] 20240716

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39012271

The edges of 2D materials have emerged as promising electrochemical catalyst systems, yet their performance still lags behind that of noble metals. Here, we demonstrate the potential of oriented electric fields (OEFs) to enhance the electrochemical activity of 2D materials edges. By atomically engineering the edge of a fluorographene/graphene/MoS2 heterojunction nanoribbon, strong and localized OEFs were realized as confirmed by simulations and spatially resolved spectroscopy. The observed fringing OEF results in an enhancement of the heterogeneous charge transfer rate between the edge and the electrolyte by 2 orders of magnitude according to impedance spectroscopy. Ab initio calculations indicate a field-induced decrease in the reactant adsorption energy as the origin of this improvement. We apply the OEF-enhanced edge reactivity to hydrogen evolution reactions (HER) and observe a significantly enhanced electrochemical performance, as evidenced by a 30% decrease in Tafel slope and a 3-fold enhanced turnover frequency. Our findings demonstrate the potential of OEFs for tailoring the catalytic properties of 2D material edges toward future complex reactions.

Zobrazit více v PubMed

Daiyan R.; MacGill I.; Amal R.. Opportunities and Challenges for Renewable Power-to-X; ACS Publications, 2020.

Seh Z. W.; Kibsgaard J.; Dickens C. F.; Chorkendorff I.; Nørskov J. K.; Jaramillo T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321), eaad499810.1126/science.aad4998. PubMed DOI

Hua W.; Sun H.-H.; Xu F.; Wang J.-G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39, 335–351. 10.1007/s12598-020-01384-7. DOI

Voiry D.; Shin H. S.; Loh K. P.; Chhowalla M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2 (1), 010510.1038/s41570-017-0105. DOI

Wang Z.; Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 2017, 51 (15), 8229–8244. 10.1021/acs.est.7b01466. PubMed DOI

Muthu J.; Khurshid F.; Chin H.-T.; Yao Y.-C.; Hsieh Y.-P.; Hofmann M. The HER performance of 2D materials is underestimated without morphology correction. Chem. Eng. J. 2023, 465, 14285210.1016/j.cej.2023.142852. DOI

Shaik S.; Danovich D.; Joy J.; Wang Z.; Stuyver T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142 (29), 12551–12562. 10.1021/jacs.0c05128. PubMed DOI

Shaik S.; Mandal D.; Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8 (12), 1091–1098. 10.1038/nchem.2651. PubMed DOI

Huang X.; Tang C.; Li J.; Chen L.-C.; Zheng J.; Zhang P.; Le J.; Li R.; Li X.; Liu J.; et al. Electric field–induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5 (6), eaaw307210.1126/sciadv.aaw3072. PubMed DOI PMC

Pan X.; Yan M.; Liu Q.; Zhou X.; Liao X.; Sun C.; Zhu J.; McAleese C.; Couture P.; Sharpe M. K.; et al. Electric-field-assisted proton coupling enhanced oxygen evolution reaction. Nat. Commun. 2024, 15 (1), 335410.1038/s41467-024-47568-y. PubMed DOI PMC

Aragonès A. C.; Haworth N. L.; Darwish N.; Ciampi S.; Bloomfield N. J.; Wallace G. G.; Diez-Perez I.; Coote M. L. Electrostatic catalysis of a Diels–Alder reaction. Nature 2016, 531 (7592), 88–91. 10.1038/nature16989. PubMed DOI

Wang J.; Jin X.; Liu Z.; Yu G.; Ji Q.; Wei H.; Zhang J.; Zhang K.; Li D.; Yuan Z.; et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 2018, 1 (5), 326–331. 10.1038/s41929-018-0057-x. DOI

Liu M.; Pang Y.; Zhang B.; De Luna P.; Voznyy O.; Xu J.; Zheng X.; Dinh C. T.; Fan F.; Cao C.; et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537 (7620), 382–386. 10.1038/nature19060. PubMed DOI

Pecina O.; Schmickler W. A model for electrochemical proton-transfer reactions. Chem. Phys. 1998, 228 (1–3), 265–277. 10.1016/S0301-0104(97)00299-1. DOI

Cai C.; Liu K.; Zhang L.; Li F.; Tan Y.; Li P.; Wang Y.; Wang M.; Feng Z.; Motta Meira D. Atomically local electric field induced interface water reorientation for alkaline hydrogen evolution reaction. Angew. Chem., Int. Ed. 2023, 62 (26), e20230087310.1002/anie.202300873. PubMed DOI

Wang Y.; Udyavara S.; Neurock M.; Frisbie C. D. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes. Nano Lett. 2019, 19 (9), 6118–6123. 10.1021/acs.nanolett.9b02079. PubMed DOI

Zhang W.; Liao X.; Pan X.; Yan M.; Li Y.; Tian X.; Zhao Y.; Xu L.; Mai L. Superior hydrogen evolution reaction performance in 2H-MoS2 to that of 1T phase. Small 2019, 15 (31), 190096410.1002/smll.201900964. PubMed DOI

Xu J.; Xue X.-X.; Shao G.; Jing C.; Dai S.; He K.; Jia P.; Wang S.; Yuan Y.; Luo J.; Lu J. Atomic-level polarization in electric fields of defects for electrocatalysis. Nat. Commun. 2023, 14 (1), 784910.1038/s41467-023-43689-y. PubMed DOI PMC

Zhu J.; Li J.; Lu R.; Yu R.; Zhao S.; Li C.; Lv L.; Xia L.; Chen X.; Cai W.; et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun. 2023, 14 (1), 467010.1038/s41467-023-40342-6. PubMed DOI PMC

Raman R.; Muthu J.; Yen Z.-L.; Qorbani M.; Chen Y.-X.; Chen D.-R.; Hofmann M.; Hsieh Y.-P. Selective activation of MoS2 grain boundaries for enhanced electrochemical activity. Nanoscale Horiz. 2024, 9, 946–955. 10.1039/D4NH00005F. PubMed DOI

Lan Y.; Xia L.-X.; Huang T.; Xu W.; Huang G.-F.; Hu W.; Huang W.-Q. Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure. Nanoscale Res. Lett. 2020, 15, 180.10.1186/s11671-020-03409-7. PubMed DOI PMC

Chen D.-R.; Muthu J.; Guo X.-Y.; Chin H.-T.; Lin Y.-C.; Haider G.; Ting C.-C.; Kalbáč M.; Hofmann M.; Hsieh Y.-P. Edge-dominated hydrogen evolution reactions in ultra-narrow MoS2 nanoribbon arrays. J. Mater. Chem. A 2023, 11 (29), 15802–15810. 10.1039/D3TA01573D. DOI

Chen S. H.; Hofmann M.; Yen Z. L.; Hsieh Y. P. 2D Material Enabled Offset-Patterning with Atomic Resolution. Adv. Funct. Mater. 2020, 30 (40), 200437010.1002/adfm.202004370. DOI

Pan Z.; Liu N.; Fu L.; Liu Z. Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J. Am. Chem. Soc. 2011, 133 (44), 17578–17581. 10.1021/ja207517u. PubMed DOI

Nipane A.; Jayanti S.; Borah A.; Teherani J. T. Electrostatics of lateral pn junctions in atomically thin materials. J. Appl. Phys. 2017, 122 (19), 19450110.1063/1.4994047. DOI

Choi S.; Shaolin Z.; Yang W. Layer-number-dependent work function of MoS2 nanoflakes. J. Korean Phys. Soc. 2014, 64, 1550–1555. 10.3938/jkps.64.1550. DOI

Sherpa S. D.; Kunc J.; Hu Y.; Levitin G.; De Heer W. A.; Berger C.; Hess D. W. Local work function measurements of plasma-fluorinated epitaxial graphene. Appl. Phys. Lett. 2014, 104 (8), 08160710.1063/1.4866783. DOI

Panasci S. E.; Schilirò E.; Greco G.; Cannas M.; Gelardi F. M.; Agnello S.; Roccaforte F.; Giannazzo F. Strain, doping, and electronic transport of large area monolayer MoS2 exfoliated on gold and transferred to an insulating substrate. ACS Appl. Mater. Interfaces 2021, 13 (26), 31248–31259. 10.1021/acsami.1c05185. PubMed DOI PMC

Ghosh R.; Papnai B.; Chen Y. S.; Yadav K.; Sankar R.; Hsieh Y. P.; Hofmann M.; Chen Y. F. Exciton manipulation for enhancing photoelectrochemical hydrogen evolution reaction in wrinkled 2D heterostructures. Adv. Mater. 2023, 35 (16), 221074610.1002/adma.202210746. PubMed DOI

He Y.; Tang P.; Hu Z.; He Q.; Zhu C.; Wang L.; Zeng Q.; Golani P.; Gao G.; Fu W.; et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11 (1), 5710.1038/s41467-019-13631-2. PubMed DOI PMC

Zhang R.; Zhang M.; Yang H.; Li G.; Xing S.; Li M.; Xu Y.; Zhang Q.; Hu S.; Liao H.; Cao Y. Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods 2021, 5 (11), 210061210.1002/smtd.202100612. PubMed DOI

Hammer B.; Hansen L. B.; Nørskov J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59 (11), 7413.10.1103/PhysRevB.59.7413. DOI

Stroppa A.; Kresse G. The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies. New J. Phys. 2008, 10 (6), 06302010.1088/1367-2630/10/6/063020. DOI

Raman R.; Muthu J.; Yen Z.-L.; Qorbani M.; Chen Y.-X.; Chen D.-R.; Hofmann M.; Hsieh Y.-P. Selective activation of MoS2 grain boundaries for enhanced electrochemical activity. Nanoscale Horiz. 2024, 9 (6), 946–955. 10.1039/D4NH00005F. PubMed DOI

Jaramillo T. F.; Jørgensen K. P.; Bonde J.; Nielsen J. H.; Horch S.; Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317 (5834), 100–102. 10.1126/science.1141483. PubMed DOI

Chen D.-R.; Hofmann M.; Yao H.-M.; Chiu S.-K.; Chen S.-H.; Luo Y.-R.; Hsu C.-C.; Hsieh Y.-P. Lateral two-dimensional material heterojunction photodetectors with ultrahigh speed and detectivity. ACS Appl. Mater. Interfaces 2019, 11 (6), 6384–6388. 10.1021/acsami.8b19093. PubMed DOI

Smidstrup S.; Markussen T.; Vancraeyveld P.; Wellendorff J.; Schneider J.; Gunst T.; Verstichel B.; Stradi D.; Khomyakov P. A.; Vej-Hansen U. G. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys.: Condens. Matter 2019, 32 (1), 01590110.1088/1361-648X/ab4007. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865.10.1103/PhysRevLett.77.3865. PubMed DOI

Fu S.; Ma Z.; Huang Z.; Zhu X.; Yan M.; Fu Y. The first-principles study on the graphene/MoS2 heterojunction. AIP Adv. 2020, 10 (4), 04522510.1063/1.5144078. DOI

Nørskov J. K.; Bligaard T.; Logadottir A.; Kitchin J.; Chen J. G.; Pandelov S.; Stimming U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152 (3), J23.10.1149/1.1856988. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...