Enhancing the Electrochemical Activity of 2D Materials Edges through Oriented Electric Fields
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39012271
PubMed Central
PMC11295188
DOI
10.1021/acsnano.4c06341
Knihovny.cz E-zdroje
- Klíčová slova
- 2D edges, 2D materials, HER, electrochemistry, oriented electric fields,
- Publikační typ
- časopisecké články MeSH
The edges of 2D materials have emerged as promising electrochemical catalyst systems, yet their performance still lags behind that of noble metals. Here, we demonstrate the potential of oriented electric fields (OEFs) to enhance the electrochemical activity of 2D materials edges. By atomically engineering the edge of a fluorographene/graphene/MoS2 heterojunction nanoribbon, strong and localized OEFs were realized as confirmed by simulations and spatially resolved spectroscopy. The observed fringing OEF results in an enhancement of the heterogeneous charge transfer rate between the edge and the electrolyte by 2 orders of magnitude according to impedance spectroscopy. Ab initio calculations indicate a field-induced decrease in the reactant adsorption energy as the origin of this improvement. We apply the OEF-enhanced edge reactivity to hydrogen evolution reactions (HER) and observe a significantly enhanced electrochemical performance, as evidenced by a 30% decrease in Tafel slope and a 3-fold enhanced turnover frequency. Our findings demonstrate the potential of OEFs for tailoring the catalytic properties of 2D material edges toward future complex reactions.
Department of Physics National Taiwan University Taipei 10617 Taiwan
Institute of Atomic and Molecular Sciences Academia Sinica Taipei 10617 Taiwan
Zobrazit více v PubMed
Daiyan R.; MacGill I.; Amal R.. Opportunities and Challenges for Renewable Power-to-X; ACS Publications, 2020.
Seh Z. W.; Kibsgaard J.; Dickens C. F.; Chorkendorff I.; Nørskov J. K.; Jaramillo T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321), eaad499810.1126/science.aad4998. PubMed DOI
Hua W.; Sun H.-H.; Xu F.; Wang J.-G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39, 335–351. 10.1007/s12598-020-01384-7. DOI
Voiry D.; Shin H. S.; Loh K. P.; Chhowalla M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2 (1), 010510.1038/s41570-017-0105. DOI
Wang Z.; Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 2017, 51 (15), 8229–8244. 10.1021/acs.est.7b01466. PubMed DOI
Muthu J.; Khurshid F.; Chin H.-T.; Yao Y.-C.; Hsieh Y.-P.; Hofmann M. The HER performance of 2D materials is underestimated without morphology correction. Chem. Eng. J. 2023, 465, 14285210.1016/j.cej.2023.142852. DOI
Shaik S.; Danovich D.; Joy J.; Wang Z.; Stuyver T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142 (29), 12551–12562. 10.1021/jacs.0c05128. PubMed DOI
Shaik S.; Mandal D.; Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8 (12), 1091–1098. 10.1038/nchem.2651. PubMed DOI
Huang X.; Tang C.; Li J.; Chen L.-C.; Zheng J.; Zhang P.; Le J.; Li R.; Li X.; Liu J.; et al. Electric field–induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5 (6), eaaw307210.1126/sciadv.aaw3072. PubMed DOI PMC
Pan X.; Yan M.; Liu Q.; Zhou X.; Liao X.; Sun C.; Zhu J.; McAleese C.; Couture P.; Sharpe M. K.; et al. Electric-field-assisted proton coupling enhanced oxygen evolution reaction. Nat. Commun. 2024, 15 (1), 335410.1038/s41467-024-47568-y. PubMed DOI PMC
Aragonès A. C.; Haworth N. L.; Darwish N.; Ciampi S.; Bloomfield N. J.; Wallace G. G.; Diez-Perez I.; Coote M. L. Electrostatic catalysis of a Diels–Alder reaction. Nature 2016, 531 (7592), 88–91. 10.1038/nature16989. PubMed DOI
Wang J.; Jin X.; Liu Z.; Yu G.; Ji Q.; Wei H.; Zhang J.; Zhang K.; Li D.; Yuan Z.; et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 2018, 1 (5), 326–331. 10.1038/s41929-018-0057-x. DOI
Liu M.; Pang Y.; Zhang B.; De Luna P.; Voznyy O.; Xu J.; Zheng X.; Dinh C. T.; Fan F.; Cao C.; et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537 (7620), 382–386. 10.1038/nature19060. PubMed DOI
Pecina O.; Schmickler W. A model for electrochemical proton-transfer reactions. Chem. Phys. 1998, 228 (1–3), 265–277. 10.1016/S0301-0104(97)00299-1. DOI
Cai C.; Liu K.; Zhang L.; Li F.; Tan Y.; Li P.; Wang Y.; Wang M.; Feng Z.; Motta Meira D. Atomically local electric field induced interface water reorientation for alkaline hydrogen evolution reaction. Angew. Chem., Int. Ed. 2023, 62 (26), e20230087310.1002/anie.202300873. PubMed DOI
Wang Y.; Udyavara S.; Neurock M.; Frisbie C. D. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes. Nano Lett. 2019, 19 (9), 6118–6123. 10.1021/acs.nanolett.9b02079. PubMed DOI
Zhang W.; Liao X.; Pan X.; Yan M.; Li Y.; Tian X.; Zhao Y.; Xu L.; Mai L. Superior hydrogen evolution reaction performance in 2H-MoS2 to that of 1T phase. Small 2019, 15 (31), 190096410.1002/smll.201900964. PubMed DOI
Xu J.; Xue X.-X.; Shao G.; Jing C.; Dai S.; He K.; Jia P.; Wang S.; Yuan Y.; Luo J.; Lu J. Atomic-level polarization in electric fields of defects for electrocatalysis. Nat. Commun. 2023, 14 (1), 784910.1038/s41467-023-43689-y. PubMed DOI PMC
Zhu J.; Li J.; Lu R.; Yu R.; Zhao S.; Li C.; Lv L.; Xia L.; Chen X.; Cai W.; et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun. 2023, 14 (1), 467010.1038/s41467-023-40342-6. PubMed DOI PMC
Raman R.; Muthu J.; Yen Z.-L.; Qorbani M.; Chen Y.-X.; Chen D.-R.; Hofmann M.; Hsieh Y.-P. Selective activation of MoS2 grain boundaries for enhanced electrochemical activity. Nanoscale Horiz. 2024, 9, 946–955. 10.1039/D4NH00005F. PubMed DOI
Lan Y.; Xia L.-X.; Huang T.; Xu W.; Huang G.-F.; Hu W.; Huang W.-Q. Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure. Nanoscale Res. Lett. 2020, 15, 180.10.1186/s11671-020-03409-7. PubMed DOI PMC
Chen D.-R.; Muthu J.; Guo X.-Y.; Chin H.-T.; Lin Y.-C.; Haider G.; Ting C.-C.; Kalbáč M.; Hofmann M.; Hsieh Y.-P. Edge-dominated hydrogen evolution reactions in ultra-narrow MoS2 nanoribbon arrays. J. Mater. Chem. A 2023, 11 (29), 15802–15810. 10.1039/D3TA01573D. DOI
Chen S. H.; Hofmann M.; Yen Z. L.; Hsieh Y. P. 2D Material Enabled Offset-Patterning with Atomic Resolution. Adv. Funct. Mater. 2020, 30 (40), 200437010.1002/adfm.202004370. DOI
Pan Z.; Liu N.; Fu L.; Liu Z. Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J. Am. Chem. Soc. 2011, 133 (44), 17578–17581. 10.1021/ja207517u. PubMed DOI
Nipane A.; Jayanti S.; Borah A.; Teherani J. T. Electrostatics of lateral pn junctions in atomically thin materials. J. Appl. Phys. 2017, 122 (19), 19450110.1063/1.4994047. DOI
Choi S.; Shaolin Z.; Yang W. Layer-number-dependent work function of MoS2 nanoflakes. J. Korean Phys. Soc. 2014, 64, 1550–1555. 10.3938/jkps.64.1550. DOI
Sherpa S. D.; Kunc J.; Hu Y.; Levitin G.; De Heer W. A.; Berger C.; Hess D. W. Local work function measurements of plasma-fluorinated epitaxial graphene. Appl. Phys. Lett. 2014, 104 (8), 08160710.1063/1.4866783. DOI
Panasci S. E.; Schilirò E.; Greco G.; Cannas M.; Gelardi F. M.; Agnello S.; Roccaforte F.; Giannazzo F. Strain, doping, and electronic transport of large area monolayer MoS2 exfoliated on gold and transferred to an insulating substrate. ACS Appl. Mater. Interfaces 2021, 13 (26), 31248–31259. 10.1021/acsami.1c05185. PubMed DOI PMC
Ghosh R.; Papnai B.; Chen Y. S.; Yadav K.; Sankar R.; Hsieh Y. P.; Hofmann M.; Chen Y. F. Exciton manipulation for enhancing photoelectrochemical hydrogen evolution reaction in wrinkled 2D heterostructures. Adv. Mater. 2023, 35 (16), 221074610.1002/adma.202210746. PubMed DOI
He Y.; Tang P.; Hu Z.; He Q.; Zhu C.; Wang L.; Zeng Q.; Golani P.; Gao G.; Fu W.; et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11 (1), 5710.1038/s41467-019-13631-2. PubMed DOI PMC
Zhang R.; Zhang M.; Yang H.; Li G.; Xing S.; Li M.; Xu Y.; Zhang Q.; Hu S.; Liao H.; Cao Y. Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods 2021, 5 (11), 210061210.1002/smtd.202100612. PubMed DOI
Hammer B.; Hansen L. B.; Nørskov J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59 (11), 7413.10.1103/PhysRevB.59.7413. DOI
Stroppa A.; Kresse G. The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies. New J. Phys. 2008, 10 (6), 06302010.1088/1367-2630/10/6/063020. DOI
Raman R.; Muthu J.; Yen Z.-L.; Qorbani M.; Chen Y.-X.; Chen D.-R.; Hofmann M.; Hsieh Y.-P. Selective activation of MoS2 grain boundaries for enhanced electrochemical activity. Nanoscale Horiz. 2024, 9 (6), 946–955. 10.1039/D4NH00005F. PubMed DOI
Jaramillo T. F.; Jørgensen K. P.; Bonde J.; Nielsen J. H.; Horch S.; Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317 (5834), 100–102. 10.1126/science.1141483. PubMed DOI
Chen D.-R.; Hofmann M.; Yao H.-M.; Chiu S.-K.; Chen S.-H.; Luo Y.-R.; Hsu C.-C.; Hsieh Y.-P. Lateral two-dimensional material heterojunction photodetectors with ultrahigh speed and detectivity. ACS Appl. Mater. Interfaces 2019, 11 (6), 6384–6388. 10.1021/acsami.8b19093. PubMed DOI
Smidstrup S.; Markussen T.; Vancraeyveld P.; Wellendorff J.; Schneider J.; Gunst T.; Verstichel B.; Stradi D.; Khomyakov P. A.; Vej-Hansen U. G. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys.: Condens. Matter 2019, 32 (1), 01590110.1088/1361-648X/ab4007. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865.10.1103/PhysRevLett.77.3865. PubMed DOI
Fu S.; Ma Z.; Huang Z.; Zhu X.; Yan M.; Fu Y. The first-principles study on the graphene/MoS2 heterojunction. AIP Adv. 2020, 10 (4), 04522510.1063/1.5144078. DOI
Nørskov J. K.; Bligaard T.; Logadottir A.; Kitchin J.; Chen J. G.; Pandelov S.; Stimming U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152 (3), J23.10.1149/1.1856988. DOI