Ticagrelor increases its own potency at the P2Y12 receptor by directly changing the plasma membrane lipid order in platelets

. 2024 Nov ; 181 (21) : 4369-4380. [epub] 20240716

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39014887

Grantová podpora
SPS 985291 North Atlantic Treaty Organization
2020.01/0043 National Research Foundation of Ukraine
European Union

BACKGROUND AND PURPOSE: Although the amphiphilic nature of the widely used antithrombotic drug Ticagrelor is well known, it was never considered as a membranotropic agent capable of interacting with the lipid bilayer in a receptor-independent way. In this study, we investigated the influence of Ticagrelor on plasma membrane lipid order in platelets and if this modulates the potency of Ticagrelor at the P2Y12 receptor. EXPERIMENTAL APPROACH: We combined fluorescent in situ, in vitro and in silico approaches to probe the interactions between the plasma membrane of platelets and Ticagrelor. The influence of Ticagrelor on the lipid order of the platelet plasma membrane and large unilamellar vesicles was studied using the advanced fluorescent probe NR12S. Furthermore, the properties of model lipid bilayers in the presence of Ticagrelor were characterized by molecular dynamics simulations. Finally, the influence of an increased lipid order on the dose-response of platelets to Ticagrelor was studied. KEY RESULTS: Ticagrelor incorporates spontaneously into lipid bilayers and affects the lipid order of the membranes of model vesicles and isolated platelets, in a nontrivial composition and concentration-dependent manner. We showed that higher plasma membrane lipid order in platelets leads to a lower IC50 value for Ticagrelor. It is shown that membrane incorporation of Ticagrelor increases its potency at the P2Y12 receptor, by increasing the order of the platelet plasma membrane. CONCLUSION AND IMPLICATIONS: A novel dual mechanism of Ticagrelor action is suggested that combines direct binding to P2Y12 receptor with simultaneous modulation of receptor-lipid microenvironment.

Zobrazit více v PubMed

Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al‐hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). The Concise Guide to PHARMACOLOGY 2021/22: G protein‐coupled receptors. British Journal of Pharmacology, 178(S1), S27–S156. https://doi.org/10.1111/bph.15538

Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Buneman, O. P., Cidlowski, J. A., Christopoulos, A., Davenport, A. P., Fabbro, D., Spedding, M., Striessnig, J., Davies, J. A., Ahlers‐Dannen, K. E., … Zolghadri, Y. (2021). The Concise Guide to PHARMACOLOGY 2021/22: Introduction and other protein targets. British Journal of Pharmacology, 178(S1), S1–S26. https://doi.org/10.1111/bph.15537

Alves, A. C., Nunes, C., Lima, J., & Reis, S. (2017). Daunorubicin and doxorubicin molecular interplay with 2D membrane models. Colloids and Surfaces B, Biointerfaces, 160, 610–618. https://doi.org/10.1016/j.colsurfb.2017.09.058

Aungraheeta, R., Conibear, A., Butler, M., Kelly, E., Nylander, S., Mumford, A., & Mundell, S. J. (2016). Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor. Blood, 128(23), 2717–2728. https://doi.org/10.1182/blood-2016-03-707844

Byrne, R. A., Rossello, X., Coughlan, J. J., Barbato, E., Berry, C., Chieffo, A., Claeys, M. J., Dan, G.‐A., Dweck, M. R., Galbraith, M., Gilard, M., Hinterbuchner, L., Jankowska, E. A., Jüni, P., Kimura, T., Kunadian, V., Leosdottir, M., Lorusso, R., Pedretti, R. F. E., … ESC Scientific Document Group. (2023). 2023 ESC guidelines for the management of acute coronary syndromes: Developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC). European Heart Journal, 44(38), 3720–3826. https://doi.org/10.1093/eurheartj/ehad191

Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179(15), 3907–3913. https://doi.org/10.1111/bph.15868

Freynhofer, M. K., Brozovic, I., Bruno, V., Farhan, S., Vogel, B., Jakl, G., Willheim, M., Hübl, W., Wojta, J., & Huber, K. (2011). Multiple electrode aggregometry and vasodilator stimulated phosphoprotein‐phosphorylation assay in clinical routine for prediction of postprocedural major adverse cardiovascular events. Thrombosis and Haemostasis, 106(2), 230–239. https://doi.org/10.1160/TH11-02-0077

Haghighi, F., Rabani, V., Pais‐De‐Barros, J.‐P., & Davani, S. (2018). Reorganization of platelet membrane sphingomyelins by adenosine diphosphate and ticagrelor. Chemistry and Physics of Lipids, 216, 25–29. https://doi.org/10.1016/j.chemphyslip.2018.09.008

Haghighi, F., Yesylevskyy, S., Davani, S., & Ramseyer, C. (2021). Membrane environment modulates ligand‐binding propensity of P2Y12 receptor. Pharmaceutics, 13(4), 524. https://doi.org/10.3390/pharmaceutics13040524

Hatty, C. R., & Banati, R. B. (2015). Protein‐ligand and membrane‐ligand interactions in pharmacology: The case of the translocator protein (TSPO). Pharmacological Research, 100, 58–63. https://doi.org/10.1016/j.phrs.2015.07.029

Heijnen, H. F. G., & Korporaal, S. J. A. (2017). Platelet Morphology and Ultrastructure. In P. Gresele, N. S. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelets in thrombotic and non‐thrombotic disorders: Pathophysiology, pharmacology and therapeutics: An update (pp. 21–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-47462-5_3

Hope, M. J., Bally, M. B., Webb, G., & Cullis, P. R. (1985). Production of large unilamellar vesicles by a rapid extrusion procedure: Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochimica et Biophysica Acta, 812(1), 55–65. https://doi.org/10.1016/0005-2736(85)90521-8

Jedrzejczak, M., Koceva‐Chyła, A., Gwoździński, K., & Jóźwiak, Z. (1999). Changes in plasma membrane fluidity of immortal rodent cells induced by anticancer drugs doxorubicin, aclarubicin and mitoxantrone. Cell Biology International, 23(7), 497–506. https://doi.org/10.1006/cbir.1999.0399

Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM‐GUI: A web‐based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945

Khalil, J., Dimofte, T., Roberts, T., Keith, M., Amaradasa, K., Hindle, M. S., Bancroft, S., Hutchinson, J. L., Naseem, K., Johnson, T., & Mundell, S. J. (2024). Ticagrelor inverse agonist activity at the P2Y12 receptor is non‐reversible versus its endogenous agonist adenosine 5′‐diphosphate. British Journal of Pharmacology, 181(1), 21–35. https://doi.org/10.1111/bph.16204

Kiriakidi, S., Chatzigiannis, C., Papaemmanouil, C., Tzakos, A. G., & Mavromoustakos, T. (2020). Exploring the role of the membrane bilayer in the recognition of candesartan by its GPCR AT1 receptor. Biochimica et Biophysica Acta. Biomembranes, 1862(3), 183142. https://doi.org/10.1016/j.bbamem.2019.183142

Kucherak, O. A., Oncul, S., Darwich, Z., Yushchenko, D. A., Arntz, Y., Didier, P., Mély, Y., & Klymchenko, A. S. (2010). Switchable nile red‐based probe for cholesterol and lipid order at the outer leaflet of biomembranes. Journal of the American Chemical Society, 132(13), 4907–4916. https://doi.org/10.1021/ja100351w

Lagoutte‐Renosi, J., Allemand, F., Ramseyer, C., Rabani, V., & Davani, S. (2021). Influence of antiplatelet agents on the lipid composition of platelet plasma membrane: A lipidomics approach with ticagrelor and its active metabolite. International Journal of Molecular Sciences, 22(3), 1432. https://doi.org/10.3390/ijms22031432

Lagoutte‐Renosi, J., Allemand, F., Ramseyer, C., Yesylevskyy, S., & Davani, S. (2022). Molecular modeling in cardiovascular pharmacology: Current state of the art and perspectives. Drug Discovery Today, 27(4), 985–1007. https://doi.org/10.1016/j.drudis.2021.11.026

Lagoutte‐Renosi, J., Pyrshev, K., Rabani, V., Ramseyer, C., Yesylevskyy, S., & Davani, S. (2019). Visualization of the ticagrelor's impact on the platelet plasma membrane lipid order by a fluorescent probe. Fundamental & Clinical Pharmacology, 33, 86.

Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM‐GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935

Lirussi, F., Pyrshev, K., Yesylevskyy, S., Rivel, T., Lopez, T., Coppens, E., Mura, S., Couvreur, P., & Ramseyer, C. (2023). Plasma membrane lipid bilayer is druggable: Selective delivery of gemcitabine‐squalene nano‐medicine to cancer cells. Biochimica et Biophysica Acta (BBA) ‐ Molecular Basis of Disease, 1869(2), 166614. https://doi.org/10.1016/j.bbadis.2022.166614

Maruoka, N., Murata, T., Omata, N., Takashima, Y., Tanii, H., Yonekura, Y., Fujibayashi, Y., & Wada, Y. (2007). Effects of chlorpromazine on plasma membrane permeability and fluidity in the rat brain: A dynamic positron autoradiography and fluorescence polarization study. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 31(1), 178–186. https://doi.org/10.1016/j.pnpbp.2006.08.019

Murata, T., Maruoka, N., Omata, N., Takashima, Y., Igarashi, K., Kasuya, F., Fujibayashi, Y., & Wada, Y. (2007). Effects of haloperidol and its pyridinium metabolite on plasma membrane permeability and fluidity in the rat brain. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 31(4), 848–857. https://doi.org/10.1016/j.pnpbp.2007.01.023

Niga, P., Hansson‐Mille, P. M., Swerin, A., Claesson, P. M., Schoelkopf, J., Gane, P. A. C., Bergendal, E., Tummino, A., Campbell, R. A., & Johnson, C. M. (2018). Interactions between model cell membranes and the neuroactive drug propofol. Journal of Colloid and Interface Science, 526, 230–243. https://doi.org/10.1016/j.jcis.2018.03.052

Nylander, S., & Schulz, R. (2016). Effects of P2Y12 receptor antagonists beyond platelet inhibition—Comparison of ticagrelor with thienopyridines. British Journal of Pharmacology, 173(7), 1163–1178. https://doi.org/10.1111/bph.13429

Ortega‐Paz, L., Brugaletta, S., Ariotti, S., Akkerhuis, K. M., Karagiannis, A., Windecker, S., Valgimigli, M., & HI‐TECH investigators. (2018). Adenosine and ticagrelor plasma levels in patients with and without ticagrelor‐related dyspnea. Circulation, 138(6), 646–648. https://doi.org/10.1161/CIRCULATIONAHA.118.034489

Pyrshev, K. A., Klymchenko, A. S., Csúcs, G., & Demchenko, A. P. (2018). Apoptosis and eryptosis: Striking differences on biomembrane level. Biochimica et Biophysica Acta. Biomembranes, 1860(6), 1362–1371. https://doi.org/10.1016/j.bbamem.2018.03.019

Pyrshev, K. A., Yesylevskyy, S. O., & Demchenko, A. P. (2019). Double‐exponential kinetics of binding and redistribution of the fluorescent dyes in cell membranes witness for the existence of lipid microdomains. Biochemical and Biophysical Research Communications, 508(4), 1139–1144. https://doi.org/10.1016/j.bbrc.2018.12.054

Pyrshev, K. A., Yesylevskyy, S. O., Mély, Y., Demchenko, A. P., & Klymchenko, A. S. (2017). Caspase‐3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: A fluorescent probe study. Biochimica et Biophysica Acta. Biomembranes, 1859(10), 2123–2132. https://doi.org/10.1016/j.bbamem.2017.08.002

Rabani, V., Montange, D., Meneveau, N., & Davani, S. (2017). Impact of ticagrelor on P2Y1 and P2Y12 localization and on cholesterol levels in platelet plasma membrane. Platelets, 29, 709–715. https://doi.org/10.1080/09537104.2017.1356453

Sahu, S. S., Sarkar, P., Shrivastava, S., & Chattopadhyay, A. (2019). Differential effects of simvastatin on membrane organization and dynamics in varying phases. Chemistry and Physics of Lipids, 225, 104831. https://doi.org/10.1016/j.chemphyslip.2019.104831

Schwarz, U. R., Geiger, J., Walter, U., & Eigenthaler, M. (1999). Flow cytometry analysis of intracellular VASP phosphorylation for the assessment of activating and inhibitory signal transduction pathways in human platelets—Definition and detection of ticlopidine/clopidogrel effects. Thrombosis and Haemostasis, 82(3), 1145–1152. https://doi.org/10.1055/s-0037-1614344

Sharma, V. K., Nagao, M., Rai, D. K., & Mamontov, E. (2019). Membrane softening by nonsteroidal anti‐inflammatory drugs investigated by neutron spin echo. Physical Chemistry Chemical Physics: PCCP, 21(36), 20211–20218. https://doi.org/10.1039/c9cp03767e

Söderlund, F., Asztély, A.‐K., Jeppsson, A., Nylander, S., Berggren, A., Nelander, K., Castellheim, A., & Romlin, B. S. (2015). In vitro anti‐platelet potency of ticagrelor in blood samples from infants and children. Thrombosis Research, 136(3), 620–624. https://doi.org/10.1016/j.thromres.2015.07.013

van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: Where they are and how they behave. Nature Reviews. Molecular Cell Biology, 9(2), 112–124. https://doi.org/10.1038/nrm2330

Yesylevskyy, S. O. (2015). Pteros 2.0: Evolution of the fast parallel molecular analysis library for C++ and Python. Journal of Computational Chemistry, 36(19), 1480–1488. https://doi.org/10.1002/jcc.23943

Zidovetzki, R., & Levitan, I. (2007). Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochimica et Biophysica Acta (BBA) ‐ Biomembranes, 1768(6), 1311–1324. https://doi.org/10.1016/j.bbamem.2007.03.026

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...