Silencing sensory neuron membrane protein RferSNMPu1 impairs pheromone detection in the invasive Asian Palm Weevil
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IFKSUDR_F142
Ministry of Education, Saudi Arabia
PubMed
39019908
PubMed Central
PMC11254914
DOI
10.1038/s41598-024-67309-x
PII: 10.1038/s41598-024-67309-x
Knihovny.cz E-zdroje
- Klíčová slova
- Electrophysiology, Olfaction, Palm weevil, Pest control, RNAi, Sensory neuron membrane protein,
- MeSH
- feromony * metabolismus MeSH
- fylogeneze MeSH
- hmyzí proteiny * genetika metabolismus MeSH
- membránové proteiny metabolismus genetika MeSH
- nervové receptory metabolismus MeSH
- nosatcovití * metabolismus genetika MeSH
- receptory pachové genetika metabolismus MeSH
- tykadla členovců metabolismus MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- feromony * MeSH
- hmyzí proteiny * MeSH
- membránové proteiny MeSH
- receptory pachové MeSH
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.
Zobrazit více v PubMed
Hoddle M, et al. Taxonomy, biology, symbionts, omics, and management of Rhynchophorus Palm Weevils (Coleoptera: Curculionidae: Dryophthorinae) Annu. Rev. Entomol. 2024;69:449–479. doi: 10.1146/annurev-ento-013023-121139. PubMed DOI
Milosavljević I, et al. Palmageddon: The wasting of ornamental palms by invasive palm weevils Rhynchophorus spp. J. Pest Sci. 2019;2004(92):143–156. doi: 10.1007/s10340-018-1044-3. DOI
El-Mergawy R, Al-Ajlan A. Red palm weevil, Rhynchophorus ferrugineus (Olivier): Economic importance, biology, biogeography and integrated pest management. J. Agric. Sci. Technol. 2011;1:1–23.
Mukhtar M, et al. New initiatives for management of red palm weevil threats to historical Arabian date palms. Fla. Entomol. 2011;94:733–736. doi: 10.1653/024.094.0401. DOI
Rach MM, et al. On the design of a bioacoustic sensor for the early detection of the red palm weevil. Sensors (Switzerland) 2013;13:1706–1729. doi: 10.3390/s130201706. PubMed DOI PMC
Ashry I, et al. Early detection of red palm weevil using distributed optical sensor. Sci. Rep. 2020;10:3155. doi: 10.1038/s41598-020-60171-7. PubMed DOI PMC
FAO. Food and Agriculture Organization of the United Nations. In Proceedings of the Scientific Consultation and High-Level meeting on Red Palm Weevil management - 29-31 March 2017, pp. 200. https://openknowledge.fao.org/server/api/core/bitstreams/8b2c1cb2-1856-47ec-b072-6b74bd38abde/content (Rome, Italy, 2019).
Hallett RH, et al. Aggregation pheromones of two Asian Palm Weevils, Rhynchophorus ferrugineus and R. vulneratus. Naturwissenschaften. 1993;80:328–331. doi: 10.1007/BF01141908. DOI
Antony B, Johny J, Aldosari SA. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 2018;9:1–17. doi: 10.3389/fphys.2018.00252. PubMed DOI PMC
Antony B, et al. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus) Mol. Ecol. 2021;30:2025–2039. doi: 10.1111/mec.15874. PubMed DOI
Leal WS. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013;58:373–391. doi: 10.1146/annurev-ento-120811-153635. PubMed DOI
Soffan A, et al. Silencing the olfactory co-receptor RferOrco reduces the response to pheromones in the red palm weevil Rhynchophorus ferrugineus. PLoS ONE. 2016;11:1–19. doi: 10.1371/journal.pone.0162203. PubMed DOI PMC
Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature. 1981;293:161–163. doi: 10.1038/293161a0. PubMed DOI
Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in drosophila. Cell. 2009;136:149–162. doi: 10.1016/j.cell.2008.12.001. PubMed DOI PMC
Kaissling K-E. Olfactory perireceptor and receptor events in moths: A kinetic model revised. J. Comp. Physiol. A. 2009;195:895–922. doi: 10.1007/s00359-009-0461-4. PubMed DOI PMC
Pelosi P, Zhou J, Ban LP, Calvello M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 2006;63:1658–1676. doi: 10.1007/s00018-005-5607-0. PubMed DOI PMC
Rogers ME, Sun M, Lerner MR, Vogt RG. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J. Biol. Chem. 1997;272:14792–14799. doi: 10.1074/jbc.272.23.14792. PubMed DOI
Rogers ME, Krieger J, Vogt RG. Antennal SNMPS (sensory neuron membrane proteins) of lepidoptera define a unique family of invertebrate CD36-like proteins. J. Neurobiol. 2001;49:47–61. doi: 10.1002/neu.1065. PubMed DOI
Vogt RG, et al. Biochemical diversity of odor detection. In: Blomquist G, et al., editors. Insect Pheromone Biochemistry and Molecular Biology. Elsevier; 2003. pp. 391–445.
Benton R, Vannice KS, Vosshall LB. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature. 2007;450:289–293. doi: 10.1038/nature06328. PubMed DOI
Jin X, Ha TS, Smith DP. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. 2008;105:10996–11001. doi: 10.1073/pnas.0803309105. PubMed DOI PMC
Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal. 2009;2:re3–re3. doi: 10.1126/scisignal.272re3. PubMed DOI PMC
Nichols Z, Vogt RG. The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem. Mol. Biol. 2008;38:398–415. doi: 10.1016/j.ibmb.2007.11.003. PubMed DOI
Shan S, et al. Molecular characterization and expression of sensory neuron membrane proteins in the parasitoid Microplitis mediator (Hymenoptera: Braconidae) Insect Sci. 2020;27:425–439. doi: 10.1111/1744-7917.12667. PubMed DOI PMC
Cassau S, Krieger J. The role of SNMPs in insect olfaction. Cell Tissue Res. 2021;383:21–33. doi: 10.1007/s00441-020-03336-0. PubMed DOI PMC
Forstner M, et al. Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem. Senses. 2008;33:291–299. doi: 10.1093/chemse/bjm087. PubMed DOI
Rogers ME, Steinbrecht RA, Vogt RG. Expression of SNMP-1 in olfactory neurons and sensilla of male and female antennae of the silkmoth Antheraea polyphemus. Cell Tissue Res. 2001;303:433–446. doi: 10.1007/s004410000305. PubMed DOI
Cassau S, et al. The sensilla-specific expression and subcellular localization of SNMP1 and SNMP2 reveal novel insights into their roles in the antenna of the desert locust Schistocerca gregaria. Insects. 2022;13:579. doi: 10.3390/insects13070579. PubMed DOI PMC
Cassau S, Krieger J. Evidence for a role of SNMP2 and antennal support cells in sensillum lymph clearance processes of moth pheromone-responsive sensilla. Insect Biochem. Mol. Biol. 2024;164:104046. doi: 10.1016/j.ibmb.2023.104046. PubMed DOI
Pregitzer P, Greschista M, Breer H, Krieger J. The sensory neurone membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system. Insect Mol. Biol. 2014;23:733–742. doi: 10.1111/imb.12119. PubMed DOI
German PF, van der Poel S, Carraher C, Kralicek AV, Newcomb RD. Insights into subunit interactions within the insect olfactory receptor complex using FRET. Insect Biochem. Mol. Biol. 2013;43:138–145. doi: 10.1016/j.ibmb.2012.11.002. PubMed DOI
Gomez-Diaz C, et al. A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat. Commun. 2016 doi: 10.1038/ncomms11866. PubMed DOI PMC
Antony B, et al. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genom. 2016;17:69. doi: 10.1186/s12864-016-2362-6. PubMed DOI PMC
Antony B, et al. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. Insect Biochem. Mol. Biol. 2024;169:104129. doi: 10.1016/j.ibmb.2024.104129. PubMed DOI
Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2009;26:136–138. doi: 10.1093/bioinformatics/btp612. PubMed DOI
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001;29:1165–1188. doi: 10.1214/aos/1013699998. DOI
Hallgren J, et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv. 2022;50:9.
Johny J, et al. Conserved orthology in termite chemosensory gene families. Front. Ecol. Evol. 2023 doi: 10.3389/fevo.2022.1065947. DOI
Zhao YJ, Li GC, Zhu JY, Liu NY. Genome-based analysis reveals a novel SNMP group of the Coleoptera and chemosensory receptors in Rhaphuma horsfieldi. Genomics. 2020;112:2713–2728. doi: 10.1016/j.ygeno.2020.03.005. PubMed DOI
Vogt RG, et al. The insect SNMP gene family. Insect Biochem. Mol. Biol. 2009;39:448–456. doi: 10.1016/j.ibmb.2009.03.007. PubMed DOI
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017 doi: 10.1093/bib/bbx108. PubMed DOI PMC
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Untergasser A, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40:1–12. doi: 10.1093/nar/gks596. PubMed DOI PMC
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Evans R, et al. Protein complex prediction with Alphafold-Multimer. bioRxiv. 2022 doi: 10.1101/2021.10.04.463034. PubMed DOI
Meng EC, et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023;32:1–13. doi: 10.1002/pro.4792. PubMed DOI PMC
Jurcik A, et al. CAVER analyst 2.0: Analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018;34:3586–3588. doi: 10.1093/bioinformatics/bty386. PubMed DOI PMC
Chovancova E, et al. CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012;8:23–30. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC
Antony B, et al. Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genom. 2019;20:440. doi: 10.1186/s12864-019-5837-4. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2^(−ΔΔCT) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Wang J, et al. The conserved domain database in 2023. Nucleic Acids Res. 2023;51:D384–D388. doi: 10.1093/nar/gkac1096. PubMed DOI PMC
Gonzalez F, et al. Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil Rhynchophorus palmarum. Sci. Rep. 2021;11:1–14. PubMed PMC
Venthur H, et al. Red palm weevil olfactory proteins annotated from the rostrum provide insights into the essential role in chemosensation and chemoreception. Front. Ecol. Evol. 2023;11:1–18. doi: 10.3389/fevo.2023.1159142. DOI
Dias GB, et al. Haplotype-resolved genome assembly enables gene discovery in the red palm weevil Rhynchophorus ferrugineus. Sci. Rep. 2021;11:1–14. doi: 10.1038/s41598-021-89091-w. PubMed DOI PMC
Sánchez P, et al. Secretory mechanisms for the male produced aggregation pheromone of the palm weevil Rhynchophorus palmarum L. (Coleoptera: Curculionidae) J. Insect Physiol. 1996;42:1113–1119. doi: 10.1016/S0022-1910(96)00039-X. DOI
Abdel-Azim MM, Vithal PSP, Aldosari SA, Mumtaz R. Impact of mating frequency on fecundity, fertility and longevity of red palm weevil, Rhynchophorus ferrugineus (Olivier)(Coleoptera: Curuclionidae) J. Agric. Sci. Tech. 2012;2:520–528.
Balart-García P, et al. Smelling in the dark: Phylogenomic insights into the chemosensory system of a subterranean beetle. Mol. Ecol. 2021;30:2573–2590. doi: 10.1111/mec.15921. PubMed DOI
Neculai D, et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature. 2013;504:172–176. doi: 10.1038/nature12684. PubMed DOI
Knorr E, Bingsohn L, Kanost MR, Vilcinskas A. Tribolium castaneum as a model for high-throughput RNAi screening. In: Vilcinskas A, editor. Yellow Biotechnology II. Springer; 2013. pp. 163–178. PubMed
Pregitzer P, et al. In search for pheromone receptors: Certain members of the odorant receptor family in the desert locust Schistocerca gregaria (orthoptera: Acrididae) are co-expressed with SNMP1. Int. J. Biol. Sci. 2017;13:911–922. doi: 10.7150/ijbs.18402. PubMed DOI PMC
Zhang H-J, et al. A phylogenomics approach to characterizing sensory neuron membrane proteins (SNMPs) in Lepidoptera. Insect Biochem. Mol. Biol. 2020;118:103313. doi: 10.1016/j.ibmb.2020.103313. PubMed DOI