Altered network efficiency in isolated REM sleep behavior disorder: A multicentric study
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, multicentrická studie
Grantová podpora
Fonds de recherche du Québec - Santé, the Canadian Institutes of Health Research, the W. Garfield Weston Foundation, the Michael J. Fox Foundation for Parkinson's Research, and the National Institutes of Health
Canada Research Chair in Cognitive Decline in Pathological Aging
CIHR, Michael J. Fox Foundation, NIH, Roche Diagnostics, and the Weston Foundation
NU21-04-00535
Czech Health Research Council
LX22NPO5107
National Institute for Neurological Research
European Union - Next Generation EU
National Institute for Health and Care Research (NIHR) Oxford Health Clinical Research Facility and the NIHR Oxford Biomedical Research Centre
IHU (IAIHU-06)
the Paris Institute of Neurosciences
ANR-11-INBS-0006
Agence Nationale de la Recherche
Control-PD (JPND Cognitive Propagation in Prodromal Parkinson's Disease)
Parkinson's UK, the Oxford Biomedical Research Centre, CPT, EPND, and the Michael J. Fox Foundation
Michael J. Fox Foundation
4D Pharma, AbbVie Inc., AcureX Therapeutics, Allergan, Amathus Therapeutics, Aligning Science Across Parkinson's (ASAP), Avid Radiopharmaceuticals, Bial Biotech, Biogen, BioLegend, Bristol Myers Squibb, Calico Life Sciences LLC, Celgene Corporation, DaCapo Brainscience, Denali Therapeutics, The Edmond J. Safra Foundation, Eli Lilly and Company, GE Healthcare, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Pharmaceuticals, Lundbeck, Merck & Co., Inc., Meso Scale Diagnostics, LLC, Neurocrine Biosciences, Pfizer Inc., Piramal Imaging, Prevail Therapeutics, F. Hoffmann-La Roche Ltd
Genentech Inc., Sanofi Genzyme, Servier, Takeda Pharmaceutical Company, Teva Neuroscience, Inc., UCB, Vanqua Bio, Verily Life Sciences, Voyager Therapeutics, Inc., and Yumanity Therapeutics, Inc
0000000082
Alzheimer Society Canada
2023-0000000122
Parkinson Canada
J-2101
Parkinson's UK - United Kingdom
National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC)
NIHR Oxford Health Clinical Research Facility
NIHR Oxford Biomedical Research Centre (BRC)
Department of Health and Social Care
Financed by European Union - Next Generation EU
ANR-10-IAIHU-06
Programme d'investissements d'avenir
ANR-10-IAIHU-06
Programme d'investissements d'avenir
IAIHU-06
Paris Institute of Neurosciences - IHU
Électricité de France (Fondation d'Entreprise EDF)
Control-PD (Joint Programme-Neurodegenerative Disease Research [JPND] Cognitive Propagation in Prodromal Parkinson's disease)
Fondation Thérèse et René Planiol
Fonds Saint-Michel
Parkinson's disease from Energipole (M. Mallart)
Société Française de Médecine Esthétique (M. Legrand)
Institut de France to Isabelle Arnulf (for the ALICE Study)
Canadian Institutes of Health Research (CIHR)
Fonds de recherche du Québec - Santé (FRQ-S)
W. Garfield Weston Foundation
PPG-2023-0000000122
Parkinson Society Canada
PubMed
40791089
PubMed Central
PMC12340432
DOI
10.1002/alz.70574
Knihovny.cz E-zdroje
- Klíčová slova
- dementia with Lewy bodies, diffusion magnetic resonance imaging, graph theory, parasomnias, sleep, structural connectivity, synucleinopathies,
- MeSH
- demence s Lewyho tělísky * diagnostické zobrazování patofyziologie MeSH
- difuzní magnetická rezonance MeSH
- konektom MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek * diagnostické zobrazování patologie MeSH
- nervová síť * diagnostické zobrazování MeSH
- Parkinsonova nemoc diagnostické zobrazování patofyziologie MeSH
- polysomnografie MeSH
- porucha chování v REM spánku * diagnostické zobrazování patofyziologie patologie MeSH
- prospektivní studie MeSH
- senioři MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
INTRODUCTION: Isolated rapid eye movement (REM) sleep behavior disorder (iRBD), characterized by abnormal movements during REM sleep, is a prodromal stage of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). While iRBD shows emerging brain changes, their impact on structural connectivity and network efficiency, and their predictive value, remain poorly characterized. METHODS: In this international prospective study, 198 polysomnography-confirmed iRBD patients and 174 controls underwent diffusion magnetic resonance imaging and were analyzed. Cutting-edge diffusion tractography and network-based statistics were applied to reconstruct individual connectomes and assess network properties predicting DLB or PD. RESULTS: Structural architecture was already disrupted in iRBD, with both reduced and compensatory increased connections. Global efficiency was decreased. Local efficiency in motor regions was altered and associated with early clinical symptoms. Altered local efficiency in the supramarginal gyrus predicted DLB only. DISCUSSION: Early disruption of brain architecture in iRBD predicts progression to synucleinopathy-related dementia, offering a novel potential prognostic biomarker. HIGHLIGHTS: Isolated rapid eye movement sleep behavior disorder (iRBD) patients show significant alterations in inter-regional structural connectivity. Global efficiency is reduced in iRBD compared to controls. Areas with increased local efficiency contribute to decreased global efficiency. Altered network efficiency is associated with emerging Parkinsonian features. Higher supramarginal efficiency predicts dementia with Lewy bodies in iRBD.
Department of Medicine University of Montreal Montreal Québec Canada
Department of Neurology Montreal General Hospital Montreal Québec Canada
Department of Neuroscience University of Montreal Montreal Québec Canada
Department of Psychology Université du Québec à Montréal Montreal Québec Canada
Research Centre Institut Universitaire de Gériatrie de Montréal Montreal Québec Canada
Sherbrooke Connectivity Imaging Lab Université de Sherbrooke Sherbrooke Québec Canada
Zobrazit více v PubMed
Zuo C, Suo X, Lan H, et al. Global alterations of whole brain structural connectome in Parkinson's disease: a meta‐analysis. Neuropsychol Rev. 2023;33:783‐802. doi: 10.1007/s11065-022-09559-y PubMed DOI PMC
Habich A, Wahlund LO, Westman E, Dierks T, Ferreira D. (Dis‐)Connected dots in dementia with Lewy bodies—a systematic review of connectivity studies. Mov Disord. 2023;38:4‐15. doi: 10.1002/mds.29248 PubMed DOI PMC
Atkinson‐Clement C, Pinto S, Eusebio A, Coulon O. Diffusion tensor imaging in Parkinson's disease: review and meta‐analysis. NeuroImage Clin. 2017;16:98‐110. doi: 10.1016/j.nicl.2017.07.011 PubMed DOI PMC
Bergamino M, Keeling EG, Mishra VR, Stokes AM, Walsh RR. Assessing white matter pathology in early‐stage Parkinson disease using diffusion MRI: a systematic review. Front Neurol. 2020;11:1‐21. doi: 10.3389/fneur.2020.00314 PubMed DOI PMC
Duncan GW, Firbank MJ, Yarnall AJ, et al. Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson's disease? Mov Disord. 2016;31:103‐110. doi: 10.1002/mds.26312 PubMed DOI
Nedelska Z, Schwarz C, Boeve B, et al. White matter integrity in dementia with Lewy bodies: a voxel‐ based analysis of diffusion tensor imaging. Neurobiol Aging. 2015;36:2010‐2017. doi: 10.1002/hep.30150.Ductular PubMed DOI PMC
Kenny ER, Blamire AM, Firbank MJ, O'Brien JT. Functional connectivity in cortical regions in dementia with Lewy bodies and Alzheimer's disease. Brain. 2012;135:569‐581. doi: 10.1093/brain/awr327 PubMed DOI PMC
Kenny ER, O'Brien JT, Firbank MJ, Blamire AM. Subcortical connectivity in dementia with Lewy bodies and Alzheimer's disease. Br J Psychiatry. 2013;203:209‐214. doi: 10.1192/bjp.bp.112.108464 PubMed DOI
Caminiti SP, Tettamanti M, Sala A, et al. Metabolic connectomics targeting brain pathology in dementia with Lewy bodies. J Cereb Blood Flow Metab. 2017;37:1311‐1325. doi: 10.1177/0271678x16654497 PubMed DOI PMC
Peraza LR, Kaiser M, Firbank M, et al. FMRI resting state networks and their association with cognitive fluctuations in dementia with Lewy bodies. NeuroImage Clin. 2014;4:558‐565. doi: 10.1016/j.nicl.2014.03.013 PubMed DOI PMC
Wen MC, Heng HS, Hsu JL, et al. Structural connectome alterations in prodromal and de novo Parkinson's disease patients. Park Relat Disord. 2017;45:21‐27. doi: 10.1016/j.parkreldis.2017.09.019 PubMed DOI
Park KM, Lee HJ, Lee BI, Kim SE. Alterations of the brain network in idiopathic rapid eye movement sleep behavior disorder: structural connectivity analysis. Sleep Breath. 2019;23:587‐593. doi: 10.1007/s11325-018-1737-0 PubMed DOI
Marek K, Jennings D, Lasch S, et al. The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol. 2011;95:629‐635. doi: 10.1016/j.pneurobio.2011.09.005 PubMed DOI PMC
Gan‐Or Z, Rao T, Leveille E, et al. The Quebec Parkinson network: a researcher‐patient matching platform and multimodal biorepository. J Parkinsons Dis. 2020;10:301‐313. doi: 10.3233/JPD-191775 PubMed DOI PMC
American Academy of Sleep Medicine . The International Classification of Sleep Disorders—Third edition (ICSD‐3). 3rd ed. Darien; 2014.
Nasreddine Z, Phillips N, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695‐699. PubMed
Goetz C, Tilley B, Shaftman S, et al. Movement disorder society‐sponsored revision of the Unified Parkinson's disease rating scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Mov Disord Off J Mov Disord Soc. 2008;23:2129‐2170. PubMed
Theaud G, Houde JC, Boré A, Rheault F, Morency F, Descoteaux M. TractoFlow: a robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity. Neuroimage. 2020;218:11689. doi: 10.1016/j.neuroimage.2020.116889 PubMed DOI
Theaud G, Houde J, Boré A, Rheault F, Morency F, Descoteaux M. TractoFlow‐ABS (Atlas‐Based Segmentation). BioRxiv. 2020. doi: 10.1101/2020.08.03.197384 PubMed DOI
Fischl B. FreeSurfer. Neuroimage. 2012;62:774‐781. doi: 10.1016/j.neuroimage.2012.01.021 PubMed DOI PMC
Theaud G, Descoteaux M. dMRIQCpy: a python‐based toolbox for diffusion MRI quality control and beyond. Int Symp Magn Reson Med. 2022:2022: Abstract 3906.
Di Tommaso P, Chatzou M, Floden E, Barja P, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35:316‐319. PubMed
Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific containers for mobility of compute. PLoS One. 2017;12:1‐20. doi: 10.1371/journal.pone.0177459 PubMed DOI PMC
Rheault F, Houde J, Sidhu J, et al. Connectoflow: a cutting‐edge Nextflow pipeline for structural connectomics. ISMRM Annu Meet Exhib. 2021: Abstract 4301.
Cammoun L, Gigandet X, Meskaldji D, et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J Neurosci Methods. 2012;203:386‐397. doi: 10.1016/j.jneumeth.2011.09.031 PubMed DOI
Tustison NJ, Holbrook AJ, Avants BB, et al. The ANTs longitudinal cortical thickness Pipeline. BioRxiv. 2017:170209. doi: 10.1101/170209 DOI
Schiavi S, Ocampo‐Pineda M, Barakovic M, et al. A new method for accurate in vivo mapping of human brain connections using microstructural and anatomical information. Sci Adv. 2020;6:eaba8245. doi: 10.1126/sciadv.aba8245 PubMed DOI PMC
Milisav F, Bazinet V, Iturria‐Medina Y, Misic B. Resolving inter‐regional communication capacity in the human connectome. Netw Neurosci. 2023;7:1051‐1079. doi: 10.1162/netn_a_00318 PubMed DOI PMC
Park B, Eo J, Park HJ. Structural brain connectivity constrains within‐a‐day variability of direct functional connectivity. Front Hum Neurosci. 2017;11:1‐15. doi: 10.3389/fnhum.2017.00408 PubMed DOI PMC
Zhang Y, Ren R, Yang L, Sanford LD, Tang X. Polysomnographically measured sleep changes in idiopathic REM sleep behavior disorder: a systematic review and meta‐analysis. Sleep Med Rev. 2020;54:101362. doi: 10.1016/j.smrv.2020.101362 PubMed DOI
Li X, Zong Q, Liu L, et al. Sex differences in rapid eye movement sleep behavior disorder: a systematic review and meta‐analysis. Sleep Med Rev. 2023;71:101810. doi: 10.1016/j.smrv.2023.101810 PubMed DOI
Zalesky A, Fornito A, Bullmore ET. Network‐based statistic: identifying differences in brain networks. Neuroimage. 2010;53:1197‐1207. doi: 10.1016/j.neuroimage.2010.06.041 PubMed DOI
Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15:870‐878. doi: 10.1006/nimg.2001.1037 PubMed DOI
Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059‐1069. doi: 10.1016/j.neuroimage.2009.10.003 PubMed DOI
Fortin JP, Parker D, Tunç B, et al. Harmonization of multi‐site diffusion tensor imaging data. Neuroimage. 2017;161:149‐170. doi: 10.1016/j.neuroimage.2017.08.047 PubMed DOI PMC
Rahayel S, Tremblay C, Vo A, et al. Brain atrophy in prodromal synucleinopathy is shaped by structural connectivity and gene expression. Brain. 2022;145:3162‐3178. doi: 10.1093/brain/awac187 PubMed DOI
Radua J, Vieta E, Shinohara R, et al. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage. 2020;218:116956. doi: 10.1016/j.neuroimage.2020.116956.Increased PubMed DOI PMC
Tremblay C, Abbasi N, Zeighami Y, et al. Sex effects on brain structure in de novo Parkinson's disease: a multi‐modal neuroimaging study. Brain. 2020;143(10):3052‐3066. PubMed
La Joie R, Perrotin A, Barre L, et al. Region‐specific hierarchy between atrophy, hypometabolism, and b‐amyloid (Ab) load in Alzheimer's disease dementia. J Neurosci. 2012;32:16265‐16273. doi: 10.1523/JNEUROSCI.2170-12.2012 PubMed DOI PMC
Váša F, Mišić B. Null models in network neuroscience. Nat Rev Neurosci. 2022;23:493‐504. doi: 10.1038/s41583-022-00601-9 PubMed DOI
Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD. Generative modeling of brain maps with spatial autocorrelation. Neuroimage. 2020;220:117038. doi: 10.1016/j.neuroimage.2020.117038 PubMed DOI
Lawton M, Hu MT, Baig F, et al. Equating scores of the University of Pennsylvania smell identification test and Sniffin’ sticks test in patients with Parkinson's disease. Park Relat Disord. 2016;33:96‐101. doi: 10.1016/j.parkreldis.2016.09.023 PubMed DOI PMC
Abdi H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip Rev Comput Stat. 2010;2:97‐106. doi: 10.1002/wics.51 DOI
Campabadal A, Segura B, Junque C, Iranzo A. Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: a systematic review of studies using neuroimaging software. Sleep Med Rev. 2021;59:101495. doi: 10.1016/j.smrv.2021.101495 PubMed DOI
Fan W, Li H, Li H, et al. Association between functional connectivity of entorhinal cortex and olfactory performance in Parkinson's disease. Brain Sci. 2022;12:963. doi: 10.3390/brainsci12080963 PubMed DOI PMC
Biundo R, Weis L, Antonini A. Cognitive decline in Parkinson's disease: the complex picture. NPJ Parkinsons Dis. 2016;2:16018. doi: 10.1038/npjparkd.2016.18 PubMed DOI PMC
Marek S, Dosenbach NU. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin Neurosci. 2018;20:133‐141. doi: 10.31887/dcns.2018.20.2/smarek PubMed DOI PMC
Rahayel S, Postuma RB, Montplaisir J, et al. A prodromal brain‐clinical pattern of cognition in synucleinopathies. Ann Neurol. 2021;89:341‐357. doi: 10.1002/ana.25962 PubMed DOI
Yang Y, Ye C, Sun J, et al. Alteration of brain structural connectivity in progression of Parkinson's disease: a connectome‐wide network analysis. Neuroimage Clin. 2021;31:102715. doi: 10.1016/j.nicl.2021.102715 PubMed DOI PMC
Halassa MM, Kastner S. Thalamic functions in distributed cognitive control. Nat Neurosci. 2017;20:1669‐1679. doi: 10.1038/s41593-017-0020-1 PubMed DOI
O'Callaghan C, Bertoux M, Hornberger M. Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry. 2014;85:371‐378. doi: 10.1136/jnnp-2012-304558 PubMed DOI
Vicente AF, Bermudez MA, Romero MDC, Perez R, Gonzalez F. Putamen neurons process both sensory and motor information during a complex task. Brain Res. 2012;1466:70‐81. doi: 10.1016/j.brainres.2012.05.037 PubMed DOI
Gomperts SN, Marquie M, Locascio JJ, Bayer S, Johnson KA, Growdon JH. PET radioligands reveal the basis of dementia in Parkinson's disease and dementia with lewy bodies. Neurodegener Dis. 2016;16:118‐124. doi: 10.1159/000441421 PubMed DOI PMC
Rahayel S, Postuma RB, Montplaisir J, et al. Abnormal gray matter shape, thickness, and volume in the motor cortico‐subcortical loop in idiopathic rapid eye movement sleep behavior disorder: association with clinical and motor features. Cereb Cortex. 2018;28:658‐671. doi: 10.1093/cercor/bhx137 PubMed DOI
Rémillard‐Pelchat D, Rahayel S, Gaubert M, et al. Comprehensive analysis of brain volume in REM sleep behavior disorder with mild cognitive impairment. J Parkinsons Dis. 2022;12:229‐241. doi: 10.3233/JPD-212691 PubMed DOI
Rahayel S, Postuma RB, Montplaisir J, et al. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder. Neurology. 2018;90:E1759‐E1770. doi: 10.1212/WNL.0000000000005523 PubMed DOI PMC
Valli M, Uribe C, Mihaescu A, Strafella AP. Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson's disease. J Neurosci Res. 2022;100:1815‐1833. doi: 10.1002/jnr.25099 PubMed DOI
Radetz A, Koirala N, Krämer J, et al. Gray matter integrity predicts white matter network reorganization in multiple sclerosis. Hum Brain Mapp. 2020;41:917‐927. doi: 10.1002/hbm.24849 PubMed DOI PMC
Roquet D, Noblet V, Anthony P, et al. Insular atrophy at the prodromal stage of dementia with Lewy bodies: a VBM DARTEL study. Sci Rep. 2017;7:1‐10. doi: 10.1038/s41598-017-08667-7 PubMed DOI PMC
Campabadal A, Segura B, Junque C, et al. Comparing the accuracy and neuroanatomical correlates of the UPSIT‐40 and the Sniffin’ Sticks test in REM sleep behavior disorder. Park Relat Disord. 2019;65:197‐202. doi: 10.1016/j.parkreldis.2019.06.013 PubMed DOI
Torres‐Pasillas G, Chi‐Castañeda D, Carrillo‐Castilla P, et al. Olfactory dysfunction in Parkinson's disease, its functional and neuroanatomical correlates. NeuroSci. 2023;4:134‐151. doi: 10.3390/neurosci4020013 PubMed DOI PMC
Blanc F, Colloby SJ, Philippi N, et al. Cortical thickness in dementia with Lewy bodies and Alzheimer's disease: a comparison of prodromal and dementia stages. PLoS One. 2015;10:1‐18. doi: 10.1371/journal.pone.0127396 PubMed DOI PMC
Aswendt M, Hoehn M. Functional hyperconnectivity related to brain disease: maladaptive process or element of resilience? Neural Regen Res. 2023;18:1489‐1490. doi: 10.4103/1673-5374.361541 PubMed DOI PMC
Bozzali M, Falini A, Cercignani M, et al. Brain tissue damage in dementia with Lewy bodies: an in vivo diffusion tensor MRI study. Brain. 2005;128:1595‐1604. doi: 10.1093/brain/awh493 PubMed DOI
Zorzi G, Thiebaut de Schotten M, Manara R, Bussè C, Corbetta M, Cagnin A. White matter abnormalities of right hemisphere attention networks contribute to visual hallucinations in dementia with Lewy bodies. Cortex. 2021;139:86‐98. doi: 10.1016/j.cortex.2021.03.007 PubMed DOI
Xia Y, Jiao H, Han J, et al. Assessment of cerebral perfusion alterations in dementia with Lewy bodies and Alzheimer's disease. Quant Imaging Med Surg. 2024;14:9112‐9125. doi: 10.21037/qims-24-946 PubMed DOI PMC
Joza S, Delva A, Tremblay C, et al. Distinct brain atrophy progression subtypes underlie phenoconversion in isolated REM sleep behaviour disorder. EBioMedicine. 2025;117:1‐18. doi: 10.1016/j.ebiom.2025.105753 PubMed DOI PMC
Osmanlioglu Y, Alappatt JA, Parker D, Verma R. Connectomic consistency: a systematic stability analysis of structural and functional connectivity. J Neural Eng. 2020;17:1‐24. doi: 10.1088/1741-2552/ab947b.Connectomic PubMed DOI PMC
Triana AM, Salmi J, Hayward NMEA, Saramäki J, Glerean E. Longitudinal single‐subject neuroimaging study reveals effects of daily environmental, physiological, and lifestyle factors on functional brain connectivity. PLoS Biol. 2024;22:e3002797. doi: 10.1371/journal.pbio.3002797 PubMed DOI PMC
Magalhães R, Picó‐Pérez M, Esteves M, et al. Habitual coffee drinkers display a distinct pattern of brain functional connectivity. Mol Psychiatry. 2021;26:6589‐6598. doi: 10.1038/s41380-021-01075-4 PubMed DOI PMC
Raut RV, Snyder AZ, Mitra A, et al. Global waves synchronize the brain's functional systems with fluctuating arousal. Sci Adv. 2021;7:1‐15. doi: 10.1126/sciadv.abf2709 PubMed DOI PMC
Lee K, Horien C, O'Connor D, et al. Arousal impacts distributed hubs modulating the integration of brain functional connectivity. Neuroimage. 2022;258:119364. doi: 10.1016/j.neuroimage.2022.119364 PubMed DOI PMC
Seidler A, Weihrich KS, Bes F, de Zeeuw J, Kunz D. Seasonality of human sleep: polysomnographic data of a neuropsychiatric sleep clinic. Front Neurosci. 2023;17:1105233. doi: 10.3389/fnins.2023.1105233 PubMed DOI PMC