Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39023313
PubMed Central
PMC11320582
DOI
10.1021/acs.jmedchem.4c00629
Knihovny.cz E-resources
- MeSH
- Activin Receptors, Type I antagonists & inhibitors metabolism MeSH
- Activin Receptors, Type II * metabolism antagonists & inhibitors MeSH
- Protein Kinase Inhibitors pharmacology chemistry MeSH
- Bone Morphogenetic Proteins metabolism MeSH
- Humans MeSH
- Molecular Probes chemistry MeSH
- Mice MeSH
- Drug Discovery MeSH
- Pyrazoles chemistry pharmacology chemical synthesis MeSH
- Signal Transduction drug effects MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Activin Receptors, Type I MeSH
- Activin Receptors, Type II * MeSH
- Protein Kinase Inhibitors MeSH
- Bone Morphogenetic Proteins MeSH
- Molecular Probes MeSH
- Pyrazoles MeSH
Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.
Department of Biology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Department of Chemistry Masaryk University Brno 625 00 Czech Republic
Department of Pharmacology and Toxicology University of Toronto Toronto Ontario M5S 1A8 Canada
International Clinical Research Center St Anne's University Hospital 602 00 Brno Czech Republic
See more in PubMed
Cohen P. Protein Kinases — the Major Drug Targets of the Twenty-First Century?. Nat. Rev. Drug Discovery 2002, 1 (4), 309–315. 10.1038/nrd773. PubMed DOI
Iqbal N.; Iqbal N. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Res. Pract. 2014, 2014, 1–9. 10.1155/2014/357027. PubMed DOI PMC
Cohen P.; Cross D.; Jänne P. A. Kinase Drug Discovery 20 Years after Imatinib: Progress and Future Directions. Nat. Rev. Drug Discovery 2021, 20 (7), 551–569. 10.1038/s41573-021-00195-4. PubMed DOI PMC
Attwood M. M.; Fabbro D.; Sokolov A. V.; Knapp S.; Schiöth H. B. Trends in Kinase Drug Discovery: Targets, Indications and Inhibitor Design. Nat. Rev. Drug Discovery 2021, 20, 839.10.1038/s41573-021-00252-y. PubMed DOI
Fedorov O.; Müller S.; Knapp S. The (Un)Targeted Cancer Kinome. Nat. Chem. Biol. 2010, 6 (3), 166–169. 10.1038/nchembio.297. PubMed DOI
Moret N.; Liu C.; Gyori B. M.; Bachman J. A.; Steppi A.; Taujale R.; Huang L.-C.; Hug C.; Berginski M.; Gomez S.; Kannan N.; Sorger P. K.. Exploring the Understudied Human Kinome for Research and Therapeutic Opportunities; BioRxiv, April 2, 2020. 10.1101/2020.04.02.022277. DOI
Müller S.; Ackloo S.; Arrowsmith C. H.; Bauser M.; Baryza J. L.; Blagg J.; Böttcher J.; Bountra C.; Brown P. J.; Bunnage M. E.; Carter A. J.; Damerell D.; Dötsch V.; Drewry D. H.; Edwards A. M.; Edwards J.; Elkins J. M.; Fischer C.; Frye S. V.; Gollner A.; Grimshaw C. E.; IJzerman A.; Hanke T.; Hartung I. V.; Hitchcock S.; Howe T.; Hughes T. V.; Laufer S.; Li V. M.; Liras S.; Marsden B. D.; Matsui H.; Mathias J.; O’Hagan R. C.; Owen D. R.; Pande V.; Rauh D.; Rosenberg S. H.; Roth B. L.; Schneider N. S.; Scholten C.; Singh Saikatendu K.; Simeonov A.; Takizawa M.; Tse C.; Thompson P. R.; Treiber D. K.; Viana A. Y.; Wells C. I.; Willson T. M.; Zuercher W. J.; Knapp S.; Mueller-Fahrnow A. Mueller-Fahrnow, A. Donated Chemical Probes for Open Science. eLife 2018, 7, e3431110.7554/eLife.34311. PubMed DOI PMC
Bunnage M. E.; Chekler E. L. P.; Jones L. H. Target Validation Using Chemical Probes. Nat. Chem. Biol. 2013, 9, 195.10.1038/nchembio.1197. PubMed DOI
Arrowsmith C. H.; Audia J. E.; Austin C.; Baell J.; Bennett J.; Blagg J.; Bountra C.; Brennan P. E.; Brown P. J.; Bunnage M. E.; Buser-Doepner C.; Campbell R. M.; Carter A. J.; Cohen P.; Copeland R. A.; Cravatt B.; Dahlin J. L.; Dhanak D.; Edwards A. M.; Frederiksen M.; Frye S. V.; Gray N.; Grimshaw C. E.; Hepworth D.; Howe T.; Huber K. V. M.; Jin J.; Knapp S.; Kotz J. D.; Kruger R. G.; Lowe D.; Mader M. M.; Marsden B.; Mueller-Fahrnow A.; Müller S.; O’Hagan R. C.; Overington J. P.; Owen D. R.; Rosenberg S. H.; Ross R.; Roth B.; Schapira M.; Schreiber S. L.; Shoichet B.; Sundström M.; Superti-Furga G.; Taunton J.; Toledo-Sherman L.; Walpole C.; Walters M. A.; Willson T. M.; Workman P.; Young R. N.; Zuercher W. J. The Promise and Peril of Chemical Probes. Nat. Chem. Biol. 2015, 11 (8), 536–541. 10.1038/nchembio.1867. PubMed DOI PMC
Cao H.; Jin M.; Gao M.; Zhou H.; Tao Y. J.; Skolnick J. Differential Kinase Activity of ACVR1 G328V and R206H Mutations with Implications to Possible TβRI Cross-Talk in Diffuse Intrinsic Pontine Glioma. Sci. Rep. 2020, 10 (1), 6140.10.1038/s41598-020-63061-0. PubMed DOI PMC
Schmierer B.; Hill C. S. TGFβ–SMAD Signal Transduction: Molecular Specificity and Functional Flexibility. Nat. Rev. Mol. Cell Biol. 2007, 8 (12), 970–982. 10.1038/nrm2297. PubMed DOI
Chaikuad A.; Alfano I.; Kerr G.; Sanvitale C. E.; Boergermann J. H.; Triffitt J. T.; von Delft F.; Knapp S.; Knaus P.; Bullock A. N. Structure of the Bone Morphogenetic Protein Receptor ALK2 and Implications for Fibrodysplasia Ossificans Progressiva. J. Biol. Chem. 2012, 287 (44), 36990–36998. 10.1074/jbc.M112.365932. PubMed DOI PMC
Rahman M. S.; Akhtar N.; Jamil H. M.; Banik R. S.; Asaduzzaman S. M. TGF-β/BMP Signaling and Other Molecular Events: Regulation of Osteoblastogenesis and Bone Formation. Bone Res. 2015, 3 (1), 15005.10.1038/boneres.2015.5. PubMed DOI PMC
Olsen O. E.; Hella H.; Elsaadi S.; Jacobi C.; Martinez-Hackert E.; Holien T. Activins as Dual Specificity TGF-β Family Molecules: SMAD-Activation via Activin- and BMP-Type 1 Receptors. Biomolecules 2020, 10 (4), 519.10.3390/biom10040519. PubMed DOI PMC
Ramachandran A.; Vizán P.; Das D.; Chakravarty P.; Vogt J.; Rogers K. W.; Müller P.; Hinck A. P.; Sapkota G. P.; Hill C. S. TGF-β Uses a Novel Mode of Receptor Activation to Phosphorylate SMAD1/5 and Induce Epithelial-to-Mesenchymal Transition. eLife 2018, 7, e3175610.7554/eLife.31756. PubMed DOI PMC
Yao Y.; Shao E. S.; Jumabay M.; Shahbazian A.; Ji S.; Boström K. I. High-Density Lipoproteins Affect Endothelial BMP-Signaling by Modulating Expression of the Activin-Like Kinase Receptor 1 and 2. Arterioscler. Thromb. Vasc. Biol. 2008, 28 (12), 2266–2274. 10.1161/ATVBAHA.108.176958. PubMed DOI PMC
Roman B. L.; Hinck A. P. ALK1 Signaling in Development and Disease: New Paradigms. Cell. Mol. Life Sci. 2017, 74 (24), 4539–4560. 10.1007/s00018-017-2636-4. PubMed DOI PMC
Salmon R. M.; Guo J.; Wood J. H.; Tong Z.; Beech J. S.; Lawera A.; Yu M.; Grainger D. J.; Reckless J.; Morrell N. W.; Li W. Molecular Basis of ALK1-Mediated Signalling by BMP9/BMP10 and Their Prodomain-Bound Forms. Nat. Commun. 2020, 11 (1), 1621.10.1038/s41467-020-15425-3. PubMed DOI PMC
Yao Y.; Zebboudj A.; Torres A.; Shao E.; Bostrom K. Activin-like Kinase Receptor 1 (ALK1) in Atherosclerotic Lesions and Vascular Mesenchymal Cells. Cardiovasc. Res. 2007, 74 (2), 279–289. 10.1016/j.cardiores.2006.09.014. PubMed DOI
Schmid C. D.; Olsavszky V.; Reinhart M.; Weyer V.; Trogisch F. A.; Sticht C.; Winkler M.; Kürschner S. W.; Hoffmann J.; Ola R.; Staniczek T.; Heineke J.; Straub B. K.; Mittler J.; Schledzewski K.; ten Dijke P.; Richter K.; Dooley S.; Géraud C.; Goerdt S.; Koch P. ALK1 Controls Hepatic Vessel Formation, Angiodiversity, and Angiocrine Functions in Hereditary Hemorrhagic Telangiectasia of the Liver. Hepatology 2023, 77, 1211.10.1002/hep.32641. PubMed DOI PMC
Martínez-Salgado C.; Sánchez-Juanes F.; López-Hernández F. J.; Muñoz-Félix J. M. Endothelial Activin Receptor-Like Kinase 1 (ALK1) Regulates Myofibroblast Emergence and Peritubular Capillary Stability in the Early Stages of Kidney Fibrosis. Front. Pharmacol. 2022, 13, 843732.10.3389/fphar.2022.843732. PubMed DOI PMC
Hong J.-M.; Hu Y.-D.; Chai X.-Q.; Tang C.-L. Role of Activin Receptor-like Kinase 1 in Vascular Development and Cerebrovascular Diseases. Neural Regen. Res. 2020, 15 (10), 1807.10.4103/1673-5374.280305. PubMed DOI PMC
Garzon-Martinez M.; Perretta-Tejedor N.; Garcia-Ortiz L.; Gomez-Marcos M. A.; Gonzalez-Sarmiento R.; Lopez-Hernandez F. J.; Martinez-Salgado C. Association of Alk1 and Endoglin Polymorphisms with Cardiovascular Damage. Sci. Rep. 2020, 10 (1), 9383.10.1038/s41598-020-66238-9. PubMed DOI PMC
Sekimata K.; Sato T.; Sakai N. ALK2: A Therapeutic Target for Fibrodysplasia Ossificans Progressiva and Diffuse Intrinsic Pontine Glioma. Chem. Pharm. Bull. (Tokyo) 2020, 68 (3), 194–200. 10.1248/cpb.c19-00882. PubMed DOI
Shore E. M.; Xu M.; Feldman G. J.; Fenstermacher D. A.; Cho T.-J.; Choi I. H.; Connor J. M.; Delai P.; Glaser D. L.; LeMerrer M.; Morhart R.; Rogers J. G.; Smith R.; Triffitt J. T.; Urtizberea J. A.; Zasloff M.; Brown M. A.; Kaplan F. S. A Recurrent Mutation in the BMP Type I Receptor ACVR1 Causes Inherited and Sporadic Fibrodysplasia Ossificans Progressiva. Nat. Genet. 2006, 38 (5), 525–527. 10.1038/ng1783. PubMed DOI
Bagarova J.; Vonner A. J.; Armstrong K. A.; Börgermann J.; Lai C. S. C.; Deng D. Y.; Beppu H.; Alfano I.; Filippakopoulos P.; Morrell N. W.; Bullock A. N.; Knaus P.; Mishina Y.; Yu P. B. Constitutively Active ALK2 Receptor Mutants Require Type II Receptor Cooperation. Mol. Cell. Biol. 2013, 33 (12), 2413–2424. 10.1128/MCB.01595-12. PubMed DOI PMC
Buczkowicz P.; Hoeman C.; Rakopoulos P.; Pajovic S.; Letourneau L.; Dzamba M.; Morrison A.; Lewis P.; Bouffet E.; Bartels U.; Zuccaro J.; Agnihotri S.; Ryall S.; Barszczyk M.; Chornenkyy Y.; Bourgey M.; Bourque G.; Montpetit A.; Cordero F.; Castelo-Branco P.; Mangerel J.; Tabori U.; Ho K. C.; Huang A.; Taylor K. R.; Mackay A.; Bendel A. E.; Nazarian J.; Fangusaro J. R.; Karajannis M. A.; Zagzag D.; Foreman N. K.; Donson A.; Hegert J. V.; Smith A.; Chan J.; Lafay-Cousin L.; Dunn S.; Hukin J.; Dunham C.; Scheinemann K.; Michaud J.; Zelcer S.; Ramsay D.; Cain J.; Brennan C.; Souweidane M. M.; Jones C.; Allis C. D.; Brudno M.; Becher O.; Hawkins C. Genomic Analysis of Diffuse Intrinsic Pontine Gliomas Identifies Three Molecular Subgroups and Recurrent Activating ACVR1Mutations. Nat. Genet. 2014, 46 (5), 451–456. 10.1038/ng.2936. PubMed DOI PMC
Taylor K. R.; Mackay A.; Truffaux N.; Butterfield Y. S.; Morozova O.; Philippe C.; Castel D.; Grasso C. S.; Vinci M.; Carvalho D.; Carcaboso A. M.; de Torres C.; Cruz O.; Mora J.; Entz-Werle N.; Ingram W. J.; Monje M.; Hargrave D.; Bullock A. N.; Puget S.; Yip S.; Jones C.; Grill J. Recurrent Activating ACVR1Mutations in Diffuse Intrinsic Pontine Glioma. Nat. Genet. 2014, 46 (5), 457–461. 10.1038/ng.2925. PubMed DOI PMC
Fontebasso A. M.; Papillon-Cavanagh S.; Schwartzentruber J.; Nikbakht H.; Gerges N.; Fiset P.-O.; Bechet D.; Faury D.; De Jay N.; Ramkissoon L. A.; Corcoran A.; Jones D. T. W.; Sturm D.; Johann P.; Tomita T.; Goldman S.; Nagib M.; Bendel A.; Goumnerova L.; Bowers D. C.; Leonard J. R.; Rubin J. B.; Alden T.; Browd S.; Geyer J. R.; Leary S.; Jallo G.; Cohen K.; Gupta N.; Prados M. D.; Carret A.-S.; Ellezam B.; Crevier L.; Klekner A.; Bognar L.; Hauser P.; Garami M.; Myseros J.; Dong Z.; Siegel P. M.; Malkin H.; Ligon A. H.; Albrecht S.; Pfister S. M.; Ligon K. L.; Majewski J.; Jabado N.; Kieran M. W. Recurrent Somatic Mutations in ACVR1 in Pediatric Midline High-Grade Astrocytoma. Nat. Genet. 2014, 46 (5), 462–466. 10.1038/ng.2950. PubMed DOI PMC
The Genomic Landscape of Diffuse Intrinsic Pontine Glioma and Pediatric Non-Brainstem High-Grade Glioma. Nat. Genet. 2014, 46 (5), 444–450. 10.1038/ng.2938. PubMed DOI PMC
Taylor K. R.; Vinci M.; Bullock A. N.; Jones C. ACVR1 Mutations in DIPG: Lessons Learned from FOP. Cancer Res. 2014, 74 (17), 4565–4570. 10.1158/0008-5472.CAN-14-1298. PubMed DOI PMC
Carvalho D.; Taylor K. R.; Olaciregui N. G.; Molinari V.; Clarke M.; Mackay A.; Ruddle R.; Henley A.; Valenti M.; Hayes A.; Brandon A. D. H.; Eccles S. A.; Raynaud F.; Boudhar A.; Monje M.; Popov S.; Moore A. S.; Mora J.; Cruz O.; Vinci M.; Brennan P. E.; Bullock A. N.; Carcaboso A. M.; Jones C. ALK2 Inhibitors Display Beneficial Effects in Preclinical Models of ACVR1Mutant Diffuse Intrinsic Pontine Glioma. Commun. Biol. 2019, 2 (1), 156.10.1038/s42003-019-0420-8. PubMed DOI PMC
Somatic Histone H3 Alterations in Pediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas. Nat. Genet. 2012, 44 (3), 251–253. 10.1038/ng.1102. PubMed DOI PMC
Fujimoto M.; Suda N.; Katagiri T. Molecular Mechanisms for Activation of Mutant Activin Receptor-like Kinase 2 in Fibrodysplasia Ossificans Progressiva. J. Oral Biosci. 2017, 59 (3), 121–126. 10.1016/j.job.2017.03.004. DOI
Chakkalakal S. A.; Zhang D.; Culbert A. L.; Convente M. R.; Caron R. J.; Wright A. C.; Maidment A. D.; Kaplan F. S.; Shore E. M. An Acvr1 R206H Knock-in Mouse Has Fibrodysplasia Ossificans Progressiva. J. Bone Miner. Res. 2012, 27 (8), 1746–1756. 10.1002/jbmr.1637. PubMed DOI PMC
Warren K. E. Diffuse Intrinsic Pontine Glioma: Poised for Progress. Front. Oncol. 2012, 2, 205.10.3389/fonc.2012.00205. PubMed DOI PMC
Morales La Madrid A.; Hashizume R.; Kieran M. W. Future Clinical Trials in DIPG: Bringing Epigenetics to the Clinic. Front. Oncol. 2015, 5, 148.10.3389/fonc.2015.00148. PubMed DOI PMC
Sanchez-Duffhues G.; Williams E.; Goumans M.-J.; Heldin C.-H.; ten Dijke P. Bone Morphogenetic Protein Receptors: Structure, Function and Targeting by Selective Small Molecule Kinase Inhibitors. Bone 2020, 138, 11547210.1016/j.bone.2020.115472. PubMed DOI
Rooney L.; Jones C. Recent Advances in ALK2 Inhibitors. ACS Omega 2021, 6 (32), 20729–20734. 10.1021/acsomega.1c02983. PubMed DOI PMC
Yu P. B.; Hong C. C.; Sachidanandan C.; Babitt J. L.; Deng D. Y.; Hoyng S. A.; Lin H. Y.; Bloch K. D.; Peterson R. T. Dorsomorphin Inhibits BMP Signals Required for Embryogenesis and Iron Metabolism. Nat. Chem. Biol. 2008, 4 (1), 33–41. 10.1038/nchembio.2007.54. PubMed DOI PMC
Vogt J.; Traynor R.; Sapkota G. P. The Specificities of Small Molecule Inhibitors of the TGFß and BMP Pathways. Cell. Signal. 2011, 23 (11), 1831–1842. 10.1016/j.cellsig.2011.06.019. PubMed DOI
Sanvitale C. E.; Kerr G.; Chaikuad A.; Ramel M.-C.; Mohedas A. H.; Reichert S.; Wang Y.; Triffitt J. T.; Cuny G. D.; Yu P. B.; Hill C. S.; Bullock A. N. A New Class of Small Molecule Inhibitor of BMP Signaling. PLoS One 2013, 8 (4), e6272110.1371/journal.pone.0062721. PubMed DOI PMC
Mohedas A. H.; Xing X.; Armstrong K. A.; Bullock A. N.; Cuny G. D.; Yu P. B. Development of an ALK2-Biased BMP Type I Receptor Kinase Inhibitor. ACS Chem. Biol. 2013, 8 (6), 1291–1302. 10.1021/cb300655w. PubMed DOI PMC
Antolin A. A.; Workman P.; Al-Lazikani B. Public Resources for Chemical Probes: The Journey so Far and the Road Ahead. Future Med. Chem. 2021, 13 (8), 731–747. 10.4155/fmc-2019-0231. PubMed DOI
Mohedas A. H.; Wang Y.; Sanvitale C. E.; Canning P.; Choi S.; Xing X.; Bullock A. N.; Cuny G. D.; Yu P. B. Structure-Activity Relationship of 3,5-Diaryl-2-Aminopyridine ALK2 Inhibitors Reveals Unaltered Binding Affinity for Fibrodysplasia Ossificans Progressiva Causing Mutants. J. Med. Chem. 2014, 57 (19), 7900–7915. 10.1021/jm501177w. PubMed DOI PMC
Smil D.; Wong J. F.; Williams E. P.; Adamson R. J.; Howarth A.; McLeod D. A.; Mamai A.; Kim S.; Wilson B. J.; Kiyota T.; Aman A.; Owen J.; Poda G.; Horiuchi K. Y.; Kuznetsova E.; Ma H.; Hamblin J. N.; Cramp S.; Roberts O. G.; Edwards A. M.; Uehling D.; Al-awar R.; Bullock A. N.; O’Meara J. A.; Isaac M. B. Leveraging an Open Science Drug Discovery Model to Develop CNS-Penetrant ALK2 Inhibitors for the Treatment of Diffuse Intrinsic Pontine Glioma. J. Med. Chem. 2020, 63 (17), 10061–10085. 10.1021/acs.jmedchem.0c01199. PubMed DOI
Ensan D.; Smil D.; Zepeda-Velázquez C. A.; Panagopoulos D.; Wong J. F.; Williams E. P.; Adamson R.; Bullock A. N.; Kiyota T.; Aman A.; Roberts O. G.; Edwards A. M.; O’Meara J. A.; Isaac M. B.; Al-awar R. Targeting ALK2: An Open Science Approach to Developing Therapeutics for the Treatment of Diffuse Intrinsic Pontine Glioma. J. Med. Chem. 2020, 63 (9), 4978–4996. 10.1021/acs.jmedchem.0c00395. PubMed DOI PMC
Němec V.; Maier L.; Berger B.-T.; Chaikuad A.; Drápela S.; Souček K.; Knapp S.; Paruch K. Highly Selective Inhibitors of Protein Kinases CLK and HIPK with the Furo[3,2-b]Pyridine Core. Eur. J. Med. Chem. 2021, 215, 113299.10.1016/j.ejmech.2021.113299. PubMed DOI
Hanke T.; Wong J. F.; Berger B.-T.; Abdi I.; Berger L. M.; Tesch R.; Tredup C.; Bullock A. N.; Müller S.; Knapp S.. A Highly Selective Chemical Probe for Activin Receptor-like Kinases ALK4 and ALK5; BioRxiv, January 23, 2020. 10.1101/2020.01.23.916502. PubMed DOI
Murrell E.; Tong J.; Smil D.; Kiyota T.; Aman A. M.; Isaac M. B.; Watson I. D. G.; Vasdev N. Leveraging Open Science Drug Development for PET: Preliminary Neuroimaging of 11 C-Labeled ALK2 Inhibitors. ACS Med. Chem. Lett. 2021, 12 (5), 846–850. 10.1021/acsmedchemlett.1c00127. PubMed DOI PMC
Mader M. M.; Rudolph J.; Hartung I. V.; Uehling D.; Workman P.; Zuercher W. Which Small Molecule? Selecting Chemical Probes for Use in Cancer Research and Target Validation. Cancer Discovery 2023, 13 (10), 2150–2165. 10.1158/2159-8290.CD-23-0536. PubMed DOI
Zhang Y.; Alexander P. B.; Wang X.-F. TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb. Perspect. Biol. 2017, 9 (4), a02214510.1101/cshperspect.a022145. PubMed DOI PMC
Huang F.; Chen Y.-G. Regulation of TGF-β Receptor Activity. Cell Biosci. 2012, 2 (1), 9.10.1186/2045-3701-2-9. PubMed DOI PMC
Aykul S.; Martinez-Hackert E. Transforming Growth Factor-β Family Ligands Can Function as Antagonists by Competing for Type II Receptor Binding. J. Biol. Chem. 2016, 291 (20), 10792–10804. 10.1074/jbc.M115.713487. PubMed DOI PMC
Riege D.; Herschel S.; Fenkl T.; Schade D. Small-Molecule Probes as Pharmacological Tools for the Bone Morphogenetic Protein Signaling Pathway. ACS Pharmacol. Transl. Sci. 2023, 6 (11), 1574–1599. 10.1021/acsptsci.3c00170. PubMed DOI PMC
Davis A. J.; Brooijmans N.; Brubaker J. D.; Stevison F.; LaBranche T. P.; Albayya F.; Fleming P.; Hodous B. L.; Kim J. L.; Kim S.; Lobbardi R.; Palmer M.; Sheets M. P.; Vassiliadis J.; Wang R.; Williams B. D.; Wilson D.; Xu L.; Zhu X. J.; Bouchard K.; Hunter J. W.; Graul C.; Greenblatt E.; Hussein A.; Lyon M.; Russo J.; Stewart R.; Dorsch M.; Guzi T. J.; Kadambi V.; Lengauer C.; Garner A. P. An ALK2 Inhibitor, BLU-782, Prevents Heterotopic Ossification in a Mouse Model of Fibrodysplasia Ossificans Progressiva. Sci. Transl. Med. 2024, 16 (749), eabp8334.10.1126/scitranslmed.abp8334. PubMed DOI
Ullrich T.; Arista L.; Weiler S.; Teixeira-Fouchard S.; Broennimann V.; Stiefl N.; Head V.; Kramer I.; Guth S. Discovery of a Novel 2-Aminopyrazine-3-Carboxamide as a Potent and Selective Inhibitor of Activin Receptor-Like Kinase-2 (ALK2) for the Treatment of Fibrodysplasia Ossificans Progressiva. Bioorg. Med. Chem. Lett. 2022, 64, 12866710.1016/j.bmcl.2022.128667. PubMed DOI
Williams E.; Bagarova J.; Kerr G.; Xia D.-D.; Place E. S.; Dey D.; Shen Y.; Bocobo G. A.; Mohedas A. H.; Huang X.; Sanderson P. E.; Lee A.; Zheng W.; Economides A. N.; Smith J. C.; Yu P. B.; Bullock A. N. Saracatinib Is an Efficacious Clinical Candidate for Fibrodysplasia Ossificans Progressiva. JCI Insight 2021, 6 (8), e9504210.1172/jci.insight.95042. PubMed DOI PMC
Yamamoto H.; Sakai N.; Ohte S.; Sato T.; Sekimata K.; Matsumoto T.; Nakamura K.; Watanabe H.; Mishima-Tsumagari C.; Tanaka A.; Hashizume Y.; Honma T.; Katagiri T.; Miyazono K.; Tomoda H.; Shirouzu M.; Koyama H. Novel Bicyclic Pyrazoles as Potent ALK2 (R206H) Inhibitors for the Treatment of Fibrodysplasia Ossificans Progressiva. Bioorg. Med. Chem. Lett. 2021, 38, 12785810.1016/j.bmcl.2021.127858. PubMed DOI
Pardanani A.; Laborde R. R.; Lasho T. L.; Finke C.; Begna K.; Al-Kali A.; Hogan W. J.; Litzow M. R.; Leontovich A.; Kowalski M.; Tefferi A. Safety and Efficacy of CYT387, a JAK1 and JAK2 Inhibitor. Myelofibrosis. Leukemia 2013, 27 (6), 1322–1327. 10.1038/leu.2013.71. PubMed DOI PMC
Burns C. J.; Bourke D. G.; Andrau L.; Bu X.; Charman S. A.; Donohue A. C.; Fantino E.; Farrugia M.; Feutrill J. T.; Joffe M.; Kling M. R.; Kurek M.; Nero T. L.; Nguyen T.; Palmer J. T.; Phillips I.; Shackleford D. M.; Sikanyika H.; Styles M.; Su S.; Treutlein H.; Zeng J.; Wilks A. F. Phenylaminopyrimidines as Inhibitors of Janus Kinases (JAKs). Bioorg. Med. Chem. Lett. 2009, 19 (20), 5887–5892. 10.1016/j.bmcl.2009.08.071. PubMed DOI
Nguyen M. H.; Atasoylu O.; Wu L.; Kapilashrami K.; Pusey M.; Gallagher K.; Lai C.-T.; Zhao P.; Barbosa J.; Liu K.; He C.; Zhang C.; Styduhar E. D.; Witten M. R.; Chen Y.; Lin L.; Yang Y.; Covington M.; Diamond S.; Yeleswaram S.; Yao W. Discovery of Novel Pyrazolopyrimidines as Potent, Selective, and Orally Bioavailable Inhibitors of ALK2. ACS Med. Chem. Lett. 2022, 13 (7), 1159–1164. 10.1021/acsmedchemlett.2c00206. PubMed DOI PMC
Structural Genomics Consortium. M4K2234 Chemical probe for ALK1 and ALK2 protein kinases. https://www.thesgc.org/chemical-probes/m4k2234.
Structural Genomics Consortium. MU1700 Chemical probe for ALK1 and ALK2 protein kinases. https://www.thesgc.org/chemical-probes/mu1700.