• This record comes from PubMed

Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2

. 2024 Aug 08 ; 67 (15) : 12632-12659. [epub] 20240718

Language English Country United States Media print-electronic

Document type Journal Article

Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.

See more in PubMed

Cohen P. Protein Kinases — the Major Drug Targets of the Twenty-First Century?. Nat. Rev. Drug Discovery 2002, 1 (4), 309–315. 10.1038/nrd773. PubMed DOI

Iqbal N.; Iqbal N. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Res. Pract. 2014, 2014, 1–9. 10.1155/2014/357027. PubMed DOI PMC

Cohen P.; Cross D.; Jänne P. A. Kinase Drug Discovery 20 Years after Imatinib: Progress and Future Directions. Nat. Rev. Drug Discovery 2021, 20 (7), 551–569. 10.1038/s41573-021-00195-4. PubMed DOI PMC

Attwood M. M.; Fabbro D.; Sokolov A. V.; Knapp S.; Schiöth H. B. Trends in Kinase Drug Discovery: Targets, Indications and Inhibitor Design. Nat. Rev. Drug Discovery 2021, 20, 839.10.1038/s41573-021-00252-y. PubMed DOI

Fedorov O.; Müller S.; Knapp S. The (Un)Targeted Cancer Kinome. Nat. Chem. Biol. 2010, 6 (3), 166–169. 10.1038/nchembio.297. PubMed DOI

Moret N.; Liu C.; Gyori B. M.; Bachman J. A.; Steppi A.; Taujale R.; Huang L.-C.; Hug C.; Berginski M.; Gomez S.; Kannan N.; Sorger P. K.. Exploring the Understudied Human Kinome for Research and Therapeutic Opportunities; BioRxiv, April 2, 2020. 10.1101/2020.04.02.022277. DOI

Müller S.; Ackloo S.; Arrowsmith C. H.; Bauser M.; Baryza J. L.; Blagg J.; Böttcher J.; Bountra C.; Brown P. J.; Bunnage M. E.; Carter A. J.; Damerell D.; Dötsch V.; Drewry D. H.; Edwards A. M.; Edwards J.; Elkins J. M.; Fischer C.; Frye S. V.; Gollner A.; Grimshaw C. E.; IJzerman A.; Hanke T.; Hartung I. V.; Hitchcock S.; Howe T.; Hughes T. V.; Laufer S.; Li V. M.; Liras S.; Marsden B. D.; Matsui H.; Mathias J.; O’Hagan R. C.; Owen D. R.; Pande V.; Rauh D.; Rosenberg S. H.; Roth B. L.; Schneider N. S.; Scholten C.; Singh Saikatendu K.; Simeonov A.; Takizawa M.; Tse C.; Thompson P. R.; Treiber D. K.; Viana A. Y.; Wells C. I.; Willson T. M.; Zuercher W. J.; Knapp S.; Mueller-Fahrnow A. Mueller-Fahrnow, A. Donated Chemical Probes for Open Science. eLife 2018, 7, e3431110.7554/eLife.34311. PubMed DOI PMC

Bunnage M. E.; Chekler E. L. P.; Jones L. H. Target Validation Using Chemical Probes. Nat. Chem. Biol. 2013, 9, 195.10.1038/nchembio.1197. PubMed DOI

Arrowsmith C. H.; Audia J. E.; Austin C.; Baell J.; Bennett J.; Blagg J.; Bountra C.; Brennan P. E.; Brown P. J.; Bunnage M. E.; Buser-Doepner C.; Campbell R. M.; Carter A. J.; Cohen P.; Copeland R. A.; Cravatt B.; Dahlin J. L.; Dhanak D.; Edwards A. M.; Frederiksen M.; Frye S. V.; Gray N.; Grimshaw C. E.; Hepworth D.; Howe T.; Huber K. V. M.; Jin J.; Knapp S.; Kotz J. D.; Kruger R. G.; Lowe D.; Mader M. M.; Marsden B.; Mueller-Fahrnow A.; Müller S.; O’Hagan R. C.; Overington J. P.; Owen D. R.; Rosenberg S. H.; Ross R.; Roth B.; Schapira M.; Schreiber S. L.; Shoichet B.; Sundström M.; Superti-Furga G.; Taunton J.; Toledo-Sherman L.; Walpole C.; Walters M. A.; Willson T. M.; Workman P.; Young R. N.; Zuercher W. J. The Promise and Peril of Chemical Probes. Nat. Chem. Biol. 2015, 11 (8), 536–541. 10.1038/nchembio.1867. PubMed DOI PMC

Cao H.; Jin M.; Gao M.; Zhou H.; Tao Y. J.; Skolnick J. Differential Kinase Activity of ACVR1 G328V and R206H Mutations with Implications to Possible TβRI Cross-Talk in Diffuse Intrinsic Pontine Glioma. Sci. Rep. 2020, 10 (1), 6140.10.1038/s41598-020-63061-0. PubMed DOI PMC

Schmierer B.; Hill C. S. TGFβ–SMAD Signal Transduction: Molecular Specificity and Functional Flexibility. Nat. Rev. Mol. Cell Biol. 2007, 8 (12), 970–982. 10.1038/nrm2297. PubMed DOI

Chaikuad A.; Alfano I.; Kerr G.; Sanvitale C. E.; Boergermann J. H.; Triffitt J. T.; von Delft F.; Knapp S.; Knaus P.; Bullock A. N. Structure of the Bone Morphogenetic Protein Receptor ALK2 and Implications for Fibrodysplasia Ossificans Progressiva. J. Biol. Chem. 2012, 287 (44), 36990–36998. 10.1074/jbc.M112.365932. PubMed DOI PMC

Rahman M. S.; Akhtar N.; Jamil H. M.; Banik R. S.; Asaduzzaman S. M. TGF-β/BMP Signaling and Other Molecular Events: Regulation of Osteoblastogenesis and Bone Formation. Bone Res. 2015, 3 (1), 15005.10.1038/boneres.2015.5. PubMed DOI PMC

Olsen O. E.; Hella H.; Elsaadi S.; Jacobi C.; Martinez-Hackert E.; Holien T. Activins as Dual Specificity TGF-β Family Molecules: SMAD-Activation via Activin- and BMP-Type 1 Receptors. Biomolecules 2020, 10 (4), 519.10.3390/biom10040519. PubMed DOI PMC

Ramachandran A.; Vizán P.; Das D.; Chakravarty P.; Vogt J.; Rogers K. W.; Müller P.; Hinck A. P.; Sapkota G. P.; Hill C. S. TGF-β Uses a Novel Mode of Receptor Activation to Phosphorylate SMAD1/5 and Induce Epithelial-to-Mesenchymal Transition. eLife 2018, 7, e3175610.7554/eLife.31756. PubMed DOI PMC

Yao Y.; Shao E. S.; Jumabay M.; Shahbazian A.; Ji S.; Boström K. I. High-Density Lipoproteins Affect Endothelial BMP-Signaling by Modulating Expression of the Activin-Like Kinase Receptor 1 and 2. Arterioscler. Thromb. Vasc. Biol. 2008, 28 (12), 2266–2274. 10.1161/ATVBAHA.108.176958. PubMed DOI PMC

Roman B. L.; Hinck A. P. ALK1 Signaling in Development and Disease: New Paradigms. Cell. Mol. Life Sci. 2017, 74 (24), 4539–4560. 10.1007/s00018-017-2636-4. PubMed DOI PMC

Salmon R. M.; Guo J.; Wood J. H.; Tong Z.; Beech J. S.; Lawera A.; Yu M.; Grainger D. J.; Reckless J.; Morrell N. W.; Li W. Molecular Basis of ALK1-Mediated Signalling by BMP9/BMP10 and Their Prodomain-Bound Forms. Nat. Commun. 2020, 11 (1), 1621.10.1038/s41467-020-15425-3. PubMed DOI PMC

Yao Y.; Zebboudj A.; Torres A.; Shao E.; Bostrom K. Activin-like Kinase Receptor 1 (ALK1) in Atherosclerotic Lesions and Vascular Mesenchymal Cells. Cardiovasc. Res. 2007, 74 (2), 279–289. 10.1016/j.cardiores.2006.09.014. PubMed DOI

Schmid C. D.; Olsavszky V.; Reinhart M.; Weyer V.; Trogisch F. A.; Sticht C.; Winkler M.; Kürschner S. W.; Hoffmann J.; Ola R.; Staniczek T.; Heineke J.; Straub B. K.; Mittler J.; Schledzewski K.; ten Dijke P.; Richter K.; Dooley S.; Géraud C.; Goerdt S.; Koch P. ALK1 Controls Hepatic Vessel Formation, Angiodiversity, and Angiocrine Functions in Hereditary Hemorrhagic Telangiectasia of the Liver. Hepatology 2023, 77, 1211.10.1002/hep.32641. PubMed DOI PMC

Martínez-Salgado C.; Sánchez-Juanes F.; López-Hernández F. J.; Muñoz-Félix J. M. Endothelial Activin Receptor-Like Kinase 1 (ALK1) Regulates Myofibroblast Emergence and Peritubular Capillary Stability in the Early Stages of Kidney Fibrosis. Front. Pharmacol. 2022, 13, 843732.10.3389/fphar.2022.843732. PubMed DOI PMC

Hong J.-M.; Hu Y.-D.; Chai X.-Q.; Tang C.-L. Role of Activin Receptor-like Kinase 1 in Vascular Development and Cerebrovascular Diseases. Neural Regen. Res. 2020, 15 (10), 1807.10.4103/1673-5374.280305. PubMed DOI PMC

Garzon-Martinez M.; Perretta-Tejedor N.; Garcia-Ortiz L.; Gomez-Marcos M. A.; Gonzalez-Sarmiento R.; Lopez-Hernandez F. J.; Martinez-Salgado C. Association of Alk1 and Endoglin Polymorphisms with Cardiovascular Damage. Sci. Rep. 2020, 10 (1), 9383.10.1038/s41598-020-66238-9. PubMed DOI PMC

Sekimata K.; Sato T.; Sakai N. ALK2: A Therapeutic Target for Fibrodysplasia Ossificans Progressiva and Diffuse Intrinsic Pontine Glioma. Chem. Pharm. Bull. (Tokyo) 2020, 68 (3), 194–200. 10.1248/cpb.c19-00882. PubMed DOI

Shore E. M.; Xu M.; Feldman G. J.; Fenstermacher D. A.; Cho T.-J.; Choi I. H.; Connor J. M.; Delai P.; Glaser D. L.; LeMerrer M.; Morhart R.; Rogers J. G.; Smith R.; Triffitt J. T.; Urtizberea J. A.; Zasloff M.; Brown M. A.; Kaplan F. S. A Recurrent Mutation in the BMP Type I Receptor ACVR1 Causes Inherited and Sporadic Fibrodysplasia Ossificans Progressiva. Nat. Genet. 2006, 38 (5), 525–527. 10.1038/ng1783. PubMed DOI

Bagarova J.; Vonner A. J.; Armstrong K. A.; Börgermann J.; Lai C. S. C.; Deng D. Y.; Beppu H.; Alfano I.; Filippakopoulos P.; Morrell N. W.; Bullock A. N.; Knaus P.; Mishina Y.; Yu P. B. Constitutively Active ALK2 Receptor Mutants Require Type II Receptor Cooperation. Mol. Cell. Biol. 2013, 33 (12), 2413–2424. 10.1128/MCB.01595-12. PubMed DOI PMC

Buczkowicz P.; Hoeman C.; Rakopoulos P.; Pajovic S.; Letourneau L.; Dzamba M.; Morrison A.; Lewis P.; Bouffet E.; Bartels U.; Zuccaro J.; Agnihotri S.; Ryall S.; Barszczyk M.; Chornenkyy Y.; Bourgey M.; Bourque G.; Montpetit A.; Cordero F.; Castelo-Branco P.; Mangerel J.; Tabori U.; Ho K. C.; Huang A.; Taylor K. R.; Mackay A.; Bendel A. E.; Nazarian J.; Fangusaro J. R.; Karajannis M. A.; Zagzag D.; Foreman N. K.; Donson A.; Hegert J. V.; Smith A.; Chan J.; Lafay-Cousin L.; Dunn S.; Hukin J.; Dunham C.; Scheinemann K.; Michaud J.; Zelcer S.; Ramsay D.; Cain J.; Brennan C.; Souweidane M. M.; Jones C.; Allis C. D.; Brudno M.; Becher O.; Hawkins C. Genomic Analysis of Diffuse Intrinsic Pontine Gliomas Identifies Three Molecular Subgroups and Recurrent Activating ACVR1Mutations. Nat. Genet. 2014, 46 (5), 451–456. 10.1038/ng.2936. PubMed DOI PMC

Taylor K. R.; Mackay A.; Truffaux N.; Butterfield Y. S.; Morozova O.; Philippe C.; Castel D.; Grasso C. S.; Vinci M.; Carvalho D.; Carcaboso A. M.; de Torres C.; Cruz O.; Mora J.; Entz-Werle N.; Ingram W. J.; Monje M.; Hargrave D.; Bullock A. N.; Puget S.; Yip S.; Jones C.; Grill J. Recurrent Activating ACVR1Mutations in Diffuse Intrinsic Pontine Glioma. Nat. Genet. 2014, 46 (5), 457–461. 10.1038/ng.2925. PubMed DOI PMC

Fontebasso A. M.; Papillon-Cavanagh S.; Schwartzentruber J.; Nikbakht H.; Gerges N.; Fiset P.-O.; Bechet D.; Faury D.; De Jay N.; Ramkissoon L. A.; Corcoran A.; Jones D. T. W.; Sturm D.; Johann P.; Tomita T.; Goldman S.; Nagib M.; Bendel A.; Goumnerova L.; Bowers D. C.; Leonard J. R.; Rubin J. B.; Alden T.; Browd S.; Geyer J. R.; Leary S.; Jallo G.; Cohen K.; Gupta N.; Prados M. D.; Carret A.-S.; Ellezam B.; Crevier L.; Klekner A.; Bognar L.; Hauser P.; Garami M.; Myseros J.; Dong Z.; Siegel P. M.; Malkin H.; Ligon A. H.; Albrecht S.; Pfister S. M.; Ligon K. L.; Majewski J.; Jabado N.; Kieran M. W. Recurrent Somatic Mutations in ACVR1 in Pediatric Midline High-Grade Astrocytoma. Nat. Genet. 2014, 46 (5), 462–466. 10.1038/ng.2950. PubMed DOI PMC

The Genomic Landscape of Diffuse Intrinsic Pontine Glioma and Pediatric Non-Brainstem High-Grade Glioma. Nat. Genet. 2014, 46 (5), 444–450. 10.1038/ng.2938. PubMed DOI PMC

Taylor K. R.; Vinci M.; Bullock A. N.; Jones C. ACVR1 Mutations in DIPG: Lessons Learned from FOP. Cancer Res. 2014, 74 (17), 4565–4570. 10.1158/0008-5472.CAN-14-1298. PubMed DOI PMC

Carvalho D.; Taylor K. R.; Olaciregui N. G.; Molinari V.; Clarke M.; Mackay A.; Ruddle R.; Henley A.; Valenti M.; Hayes A.; Brandon A. D. H.; Eccles S. A.; Raynaud F.; Boudhar A.; Monje M.; Popov S.; Moore A. S.; Mora J.; Cruz O.; Vinci M.; Brennan P. E.; Bullock A. N.; Carcaboso A. M.; Jones C. ALK2 Inhibitors Display Beneficial Effects in Preclinical Models of ACVR1Mutant Diffuse Intrinsic Pontine Glioma. Commun. Biol. 2019, 2 (1), 156.10.1038/s42003-019-0420-8. PubMed DOI PMC

Somatic Histone H3 Alterations in Pediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas. Nat. Genet. 2012, 44 (3), 251–253. 10.1038/ng.1102. PubMed DOI PMC

Fujimoto M.; Suda N.; Katagiri T. Molecular Mechanisms for Activation of Mutant Activin Receptor-like Kinase 2 in Fibrodysplasia Ossificans Progressiva. J. Oral Biosci. 2017, 59 (3), 121–126. 10.1016/j.job.2017.03.004. DOI

Chakkalakal S. A.; Zhang D.; Culbert A. L.; Convente M. R.; Caron R. J.; Wright A. C.; Maidment A. D.; Kaplan F. S.; Shore E. M. An Acvr1 R206H Knock-in Mouse Has Fibrodysplasia Ossificans Progressiva. J. Bone Miner. Res. 2012, 27 (8), 1746–1756. 10.1002/jbmr.1637. PubMed DOI PMC

Warren K. E. Diffuse Intrinsic Pontine Glioma: Poised for Progress. Front. Oncol. 2012, 2, 205.10.3389/fonc.2012.00205. PubMed DOI PMC

Morales La Madrid A.; Hashizume R.; Kieran M. W. Future Clinical Trials in DIPG: Bringing Epigenetics to the Clinic. Front. Oncol. 2015, 5, 148.10.3389/fonc.2015.00148. PubMed DOI PMC

Sanchez-Duffhues G.; Williams E.; Goumans M.-J.; Heldin C.-H.; ten Dijke P. Bone Morphogenetic Protein Receptors: Structure, Function and Targeting by Selective Small Molecule Kinase Inhibitors. Bone 2020, 138, 11547210.1016/j.bone.2020.115472. PubMed DOI

Rooney L.; Jones C. Recent Advances in ALK2 Inhibitors. ACS Omega 2021, 6 (32), 20729–20734. 10.1021/acsomega.1c02983. PubMed DOI PMC

Yu P. B.; Hong C. C.; Sachidanandan C.; Babitt J. L.; Deng D. Y.; Hoyng S. A.; Lin H. Y.; Bloch K. D.; Peterson R. T. Dorsomorphin Inhibits BMP Signals Required for Embryogenesis and Iron Metabolism. Nat. Chem. Biol. 2008, 4 (1), 33–41. 10.1038/nchembio.2007.54. PubMed DOI PMC

Vogt J.; Traynor R.; Sapkota G. P. The Specificities of Small Molecule Inhibitors of the TGFß and BMP Pathways. Cell. Signal. 2011, 23 (11), 1831–1842. 10.1016/j.cellsig.2011.06.019. PubMed DOI

Sanvitale C. E.; Kerr G.; Chaikuad A.; Ramel M.-C.; Mohedas A. H.; Reichert S.; Wang Y.; Triffitt J. T.; Cuny G. D.; Yu P. B.; Hill C. S.; Bullock A. N. A New Class of Small Molecule Inhibitor of BMP Signaling. PLoS One 2013, 8 (4), e6272110.1371/journal.pone.0062721. PubMed DOI PMC

Mohedas A. H.; Xing X.; Armstrong K. A.; Bullock A. N.; Cuny G. D.; Yu P. B. Development of an ALK2-Biased BMP Type I Receptor Kinase Inhibitor. ACS Chem. Biol. 2013, 8 (6), 1291–1302. 10.1021/cb300655w. PubMed DOI PMC

Antolin A. A.; Workman P.; Al-Lazikani B. Public Resources for Chemical Probes: The Journey so Far and the Road Ahead. Future Med. Chem. 2021, 13 (8), 731–747. 10.4155/fmc-2019-0231. PubMed DOI

Mohedas A. H.; Wang Y.; Sanvitale C. E.; Canning P.; Choi S.; Xing X.; Bullock A. N.; Cuny G. D.; Yu P. B. Structure-Activity Relationship of 3,5-Diaryl-2-Aminopyridine ALK2 Inhibitors Reveals Unaltered Binding Affinity for Fibrodysplasia Ossificans Progressiva Causing Mutants. J. Med. Chem. 2014, 57 (19), 7900–7915. 10.1021/jm501177w. PubMed DOI PMC

Smil D.; Wong J. F.; Williams E. P.; Adamson R. J.; Howarth A.; McLeod D. A.; Mamai A.; Kim S.; Wilson B. J.; Kiyota T.; Aman A.; Owen J.; Poda G.; Horiuchi K. Y.; Kuznetsova E.; Ma H.; Hamblin J. N.; Cramp S.; Roberts O. G.; Edwards A. M.; Uehling D.; Al-awar R.; Bullock A. N.; O’Meara J. A.; Isaac M. B. Leveraging an Open Science Drug Discovery Model to Develop CNS-Penetrant ALK2 Inhibitors for the Treatment of Diffuse Intrinsic Pontine Glioma. J. Med. Chem. 2020, 63 (17), 10061–10085. 10.1021/acs.jmedchem.0c01199. PubMed DOI

Ensan D.; Smil D.; Zepeda-Velázquez C. A.; Panagopoulos D.; Wong J. F.; Williams E. P.; Adamson R.; Bullock A. N.; Kiyota T.; Aman A.; Roberts O. G.; Edwards A. M.; O’Meara J. A.; Isaac M. B.; Al-awar R. Targeting ALK2: An Open Science Approach to Developing Therapeutics for the Treatment of Diffuse Intrinsic Pontine Glioma. J. Med. Chem. 2020, 63 (9), 4978–4996. 10.1021/acs.jmedchem.0c00395. PubMed DOI PMC

Němec V.; Maier L.; Berger B.-T.; Chaikuad A.; Drápela S.; Souček K.; Knapp S.; Paruch K. Highly Selective Inhibitors of Protein Kinases CLK and HIPK with the Furo[3,2-b]Pyridine Core. Eur. J. Med. Chem. 2021, 215, 113299.10.1016/j.ejmech.2021.113299. PubMed DOI

Hanke T.; Wong J. F.; Berger B.-T.; Abdi I.; Berger L. M.; Tesch R.; Tredup C.; Bullock A. N.; Müller S.; Knapp S.. A Highly Selective Chemical Probe for Activin Receptor-like Kinases ALK4 and ALK5; BioRxiv, January 23, 2020. 10.1101/2020.01.23.916502. PubMed DOI

Murrell E.; Tong J.; Smil D.; Kiyota T.; Aman A. M.; Isaac M. B.; Watson I. D. G.; Vasdev N. Leveraging Open Science Drug Development for PET: Preliminary Neuroimaging of 11 C-Labeled ALK2 Inhibitors. ACS Med. Chem. Lett. 2021, 12 (5), 846–850. 10.1021/acsmedchemlett.1c00127. PubMed DOI PMC

Mader M. M.; Rudolph J.; Hartung I. V.; Uehling D.; Workman P.; Zuercher W. Which Small Molecule? Selecting Chemical Probes for Use in Cancer Research and Target Validation. Cancer Discovery 2023, 13 (10), 2150–2165. 10.1158/2159-8290.CD-23-0536. PubMed DOI

Zhang Y.; Alexander P. B.; Wang X.-F. TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb. Perspect. Biol. 2017, 9 (4), a02214510.1101/cshperspect.a022145. PubMed DOI PMC

Huang F.; Chen Y.-G. Regulation of TGF-β Receptor Activity. Cell Biosci. 2012, 2 (1), 9.10.1186/2045-3701-2-9. PubMed DOI PMC

Aykul S.; Martinez-Hackert E. Transforming Growth Factor-β Family Ligands Can Function as Antagonists by Competing for Type II Receptor Binding. J. Biol. Chem. 2016, 291 (20), 10792–10804. 10.1074/jbc.M115.713487. PubMed DOI PMC

Riege D.; Herschel S.; Fenkl T.; Schade D. Small-Molecule Probes as Pharmacological Tools for the Bone Morphogenetic Protein Signaling Pathway. ACS Pharmacol. Transl. Sci. 2023, 6 (11), 1574–1599. 10.1021/acsptsci.3c00170. PubMed DOI PMC

Davis A. J.; Brooijmans N.; Brubaker J. D.; Stevison F.; LaBranche T. P.; Albayya F.; Fleming P.; Hodous B. L.; Kim J. L.; Kim S.; Lobbardi R.; Palmer M.; Sheets M. P.; Vassiliadis J.; Wang R.; Williams B. D.; Wilson D.; Xu L.; Zhu X. J.; Bouchard K.; Hunter J. W.; Graul C.; Greenblatt E.; Hussein A.; Lyon M.; Russo J.; Stewart R.; Dorsch M.; Guzi T. J.; Kadambi V.; Lengauer C.; Garner A. P. An ALK2 Inhibitor, BLU-782, Prevents Heterotopic Ossification in a Mouse Model of Fibrodysplasia Ossificans Progressiva. Sci. Transl. Med. 2024, 16 (749), eabp8334.10.1126/scitranslmed.abp8334. PubMed DOI

Ullrich T.; Arista L.; Weiler S.; Teixeira-Fouchard S.; Broennimann V.; Stiefl N.; Head V.; Kramer I.; Guth S. Discovery of a Novel 2-Aminopyrazine-3-Carboxamide as a Potent and Selective Inhibitor of Activin Receptor-Like Kinase-2 (ALK2) for the Treatment of Fibrodysplasia Ossificans Progressiva. Bioorg. Med. Chem. Lett. 2022, 64, 12866710.1016/j.bmcl.2022.128667. PubMed DOI

Williams E.; Bagarova J.; Kerr G.; Xia D.-D.; Place E. S.; Dey D.; Shen Y.; Bocobo G. A.; Mohedas A. H.; Huang X.; Sanderson P. E.; Lee A.; Zheng W.; Economides A. N.; Smith J. C.; Yu P. B.; Bullock A. N. Saracatinib Is an Efficacious Clinical Candidate for Fibrodysplasia Ossificans Progressiva. JCI Insight 2021, 6 (8), e9504210.1172/jci.insight.95042. PubMed DOI PMC

Yamamoto H.; Sakai N.; Ohte S.; Sato T.; Sekimata K.; Matsumoto T.; Nakamura K.; Watanabe H.; Mishima-Tsumagari C.; Tanaka A.; Hashizume Y.; Honma T.; Katagiri T.; Miyazono K.; Tomoda H.; Shirouzu M.; Koyama H. Novel Bicyclic Pyrazoles as Potent ALK2 (R206H) Inhibitors for the Treatment of Fibrodysplasia Ossificans Progressiva. Bioorg. Med. Chem. Lett. 2021, 38, 12785810.1016/j.bmcl.2021.127858. PubMed DOI

Pardanani A.; Laborde R. R.; Lasho T. L.; Finke C.; Begna K.; Al-Kali A.; Hogan W. J.; Litzow M. R.; Leontovich A.; Kowalski M.; Tefferi A. Safety and Efficacy of CYT387, a JAK1 and JAK2 Inhibitor. Myelofibrosis. Leukemia 2013, 27 (6), 1322–1327. 10.1038/leu.2013.71. PubMed DOI PMC

Burns C. J.; Bourke D. G.; Andrau L.; Bu X.; Charman S. A.; Donohue A. C.; Fantino E.; Farrugia M.; Feutrill J. T.; Joffe M.; Kling M. R.; Kurek M.; Nero T. L.; Nguyen T.; Palmer J. T.; Phillips I.; Shackleford D. M.; Sikanyika H.; Styles M.; Su S.; Treutlein H.; Zeng J.; Wilks A. F. Phenylaminopyrimidines as Inhibitors of Janus Kinases (JAKs). Bioorg. Med. Chem. Lett. 2009, 19 (20), 5887–5892. 10.1016/j.bmcl.2009.08.071. PubMed DOI

Nguyen M. H.; Atasoylu O.; Wu L.; Kapilashrami K.; Pusey M.; Gallagher K.; Lai C.-T.; Zhao P.; Barbosa J.; Liu K.; He C.; Zhang C.; Styduhar E. D.; Witten M. R.; Chen Y.; Lin L.; Yang Y.; Covington M.; Diamond S.; Yeleswaram S.; Yao W. Discovery of Novel Pyrazolopyrimidines as Potent, Selective, and Orally Bioavailable Inhibitors of ALK2. ACS Med. Chem. Lett. 2022, 13 (7), 1159–1164. 10.1021/acsmedchemlett.2c00206. PubMed DOI PMC

Structural Genomics Consortium. M4K2234 Chemical probe for ALK1 and ALK2 protein kinases. https://www.thesgc.org/chemical-probes/m4k2234.

Structural Genomics Consortium. MU1700 Chemical probe for ALK1 and ALK2 protein kinases. https://www.thesgc.org/chemical-probes/mu1700.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...