• This record comes from PubMed

Ginger Extract and Omega-3 Fatty Acids Supplementation: A Promising Strategy to Improve Diabetic Cardiomyopathy

. 2024 Jul 17 ; 73 (3) : 351-367.

Language English Country Czech Republic Media print

Document type Journal Article

Diabetic cardiomyopathy may result from the overproduction of ROS, TRPM2 and TRPV2. Moreover, the therapeutic role of ginger, omega-3 fatty acids, and their combinations on the expression of TRPM2 and TRPV2 and their relationship with apoptosis, inflammation, and oxidative damage in heart tissue of rats with type 2 diabetes have not yet been determined. Therefore, this study aimed to investigate the therapeutic effects of ginger and omega-3 fatty acids on diabetic cardiomyopathy by evaluating the cardiac gene expression of TRPM2 and TRPV2, oxidative damage, inflammation, and apoptosis in male rats. Ninety adult male Wistar rats were equally divided into nine control, diabetes, and treated diabetes groups. Ginger extract (100 mg/kg) and omega-3 fatty acids (50, 100, and 150 mg/kg) were orally administrated in diabetic rats for 6 weeks. Type 2 diabetes was induced by feeding a high-fat diet and a single dose of STZ (40 mg/kg). Glucose, cardiac troponin I (cTnI), lipid profile, insulin in serum, and TNF-alpha IL-6, SOD, MDA, and CAT in the left ventricle of the heart were measured. The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bcl2, Bax, Cas-3, and Nrf-2 genes was also measured in the left ventricle of the heart. An electrocardiogram (ECG) was continuously recorded to monitor arrhythmia at the end of the course. The serum levels of cTnI, glucose, insulin, and lipid profile, and the cardiac levels of MDA, IL-6, and TNF-alpha increased in the diabetic group compared to the control group (p<0.05). Moreover, the cardiac levels of SOD and CAT decreased in the diabetic group compared to the control group (p<0.05). The cardiac expression of TRPM2, TRPV2, NF-kappaB, Bax, and Cas-3 increased and Bcl2 and Nrf-2 expression decreased in the diabetic group compared to the control group (p<0.05). However, simultaneous and separate treatment with ginger extract and omega-3 fatty acids (50, 100, and 150 mg/kg) could significantly moderate these changes (p<0.05). The results also showed that the simultaneous treatment of ginger extract and different doses of omega-3 fatty acids have improved therapeutic effects than their individual treatments (p<0.05). It can be concluded that ginger and omega-3 fatty acids showed protective effects against diabetic cardiomyopathy by inhibiting inflammation, apoptosis and oxidative damage of the heart and reducing blood glucose and cardiac expression of TRPM2 and TRPV2. Combining ginger and omega-3 in the diet may provide a natural approach to reducing the risk or progression of diabetic cardiomyopathy while preserving heart structure and function.

See more in PubMed

Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021;8:695792. doi: 10.3389/fmed.2021.695792. PubMed DOI PMC

Huo J-L, Feng Q, Pan S, Fu W-J, Liu Z, Liu Z. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discov. 2023;9:256. doi: 10.1038/s41420-023-01553-4. PubMed DOI PMC

Rasoulinejad SA, Akbari A, Nasiri K. Interaction of miR-146a-5p with oxidative stress and inflammation in complications of type 2 diabetes mellitus in male rats: Anti-oxidant and anti-inflammatory protection strategies in type 2 diabetic retinopathy. Iran J Basic Med Sci. 2021;24:1078–1086. doi: 10.22038/IJBMS.2021.56958.12706. PubMed DOI PMC

Ahmed Mustafa Z, Ali RH, Ali DR, Abdulkarimi R, Abdulkareem NK, Akbari A. The combination of ginger powder and zinc supplement improves the fructose-induced metabolic syndrome in rats by modulating the hepatic expression of NF-κB, mTORC1, PPAR-α SREBP-1c, and Nrf2. J Food Biochem. 2021;45:e13546. doi: 10.1111/jfbc.13546. PubMed DOI

Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, et al. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int J Mol Sci. 2015;16:25234–25263. doi: 10.3390/ijms161025234. PubMed DOI PMC

Cheung JY, Miller BA. Transient Receptor Potential-Melastatin Channel Family Member 2: Friend or Foe. Trans Am Clin Climatol Assoc. 2017;128:308–329. PubMed PMC

Kozai D, Ogawa N, Mori Y. Redox Regulation of Transient Receptor Potential Channels. Antioxid Redox Signal. 2014;21:971–986. doi: 10.1089/ars.2013.5616. PubMed DOI

Gorbunov AS, Maslov LN, Jaggi AS, Singh N, De Petrocellis L, Boshchenko AA, Roohbakhsh A, et al. Physiological and Pathological Role of TRPV1, TRPV2 and TRPV4 Channels in Heart. Curr Cardiol Rev. 2019;5:244–251. doi: 10.2174/1573403X15666190307112326. PubMed DOI PMC

Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2015;308:H157–H182. doi: 10.1152/ajpheart.00457.2014. PubMed DOI PMC

Li N, Xing Y, Sultan AH, Raeeszadeh M, Akbari A, Liu H. Ginger (Zingiber officinale Roscoe) improves ethanol-induced reproductive dysfunction by enhancing steroidogenesis and inhibiting oxidative stress and inflammation. Braz Arch Biol Technol. 2022;64:e21210035. doi: 10.1590/1678-4324-2021210035. DOI

Ilkhanizadeh B, Shirpoor A, Khadem Ansari MH, Nemati S, Rasmi Y. Protective Effects of Ginger (Zingiber officinale) Extract against Diabetes-Induced Heart Abnormality in Rats. Diabetes Metab J. 2016;40:46–53. doi: 10.4093/dmj.2016.40.1.46. PubMed DOI PMC

Huang L, Zhang F, Xu P, Zhou Y, Liu Y, Zhang H, Tan X, et al. Effect of Omega-3 Polyunsaturated Fatty Acids on Cardiovascular Outcomes in Patients with Diabetes: A Meta-analysis of Randomized Controlled Trials. Adv Nutr. 2023;14:629–636. doi: 10.1016/j.advnut.2023.04.009. PubMed DOI PMC

Akbari A, Nasiri K, Heydari M. Ginger (Zingiber officinale Roscoe) extract can improve the levels of some trace elements and total homocysteine and prevent oxidative damage induced by ethanol in rat eye. Avicenna J Phytomed. 2020;10:365–371. PubMed PMC

Akbari A, Nasiri K, Heydari M, Nimrouzi M, Afsar T. Ameliorating potential of ginger (Zingiber officinale Roscoe) extract on liver function and oxidative stress induced by ethanol in male rats. Zahedan J Res Med Sci. 2019;21:e86464. doi: 10.5812/zjrms.86464. DOI

Fathi R, Akbari A, Nasiri K, Chardahcherik M. Ginger (Zingiber officinale roscoe) extract could upregulate the renal expression of NRF2 and TNFα and prevents ethanol-induced toxicity in rat kidney. Avicenna J Phytomed. 2021;11:134. PubMed PMC

Ma H, Li J. The ginger extract could improve diabetic retinopathy by inhibiting the expression of e/iNOS and G6PDH, apoptosis, inflammation, and angiogenesis. J Food Biochem. 2022;46:e14084. doi: 10.1111/jfbc.14084. PubMed DOI

Alharbi KS, Nadeem MS, Afzal O, Alzarea SI, Altamimi ASA, Almalki WH, Mubeen B, et al. Gingerol, a Natural Antioxidant, Attenuates Hyperglycemia and Downstream Complications. Metabolites. 2022;12:1274. doi: 10.3390/metabo12121274. PubMed DOI PMC

Fakhri S, Patra JK, Das SK, Das G, Majnooni MB, Farzaei MH. Ginger and Heart Health: From Mechanisms to Therapeutics. Curr Mol Pharmacol. 2021;14:943–959. doi: 10.2174/1874467213666201209105005. PubMed DOI

Salaramoli S, Mehri S, Yarmohammadi F, Hashemy SI, Hosseinzadeh H. The effects of ginger and its constituents in the prevention of metabolic syndrome: A review. Iran J Basic Med Sci. 2022;25:664–674. doi: 10.22038/IJBMS.2022.59627.13231. PubMed DOI PMC

Hasani H, Arab A, Hadi A, Pourmasoumi M, Ghavami A, Miraghajani M. Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. Phytother Res. 2019;33:1639–1647. doi: 10.1002/ptr.6362. PubMed DOI

Sherratt SCR, Libby P, Budoff MJ, Bhatt DL, Mason RP. Role of Omega-3 Fatty Acids in Cardiovascular Disease: the Debate Continues. Curr Atheroscler Rep. 2023;25:1–17. doi: 10.1007/s11883-022-01075-x. PubMed DOI PMC

Sheikh O, Vande Hei AG, Battisha A, Hammad T, Pham S, Chilton R. Cardiovascular, electrophysiologic, and hematologic effects of omega-3 fatty acids beyond reducing hypertriglyceridemia: as it pertains to the recently published REDUCE-IT trial. Cardiovasc Diabetol. 2019;18:84. doi: 10.1186/s12933-019-0887-0. PubMed DOI PMC

Zhukovska AS, Shysh AM, Moibenko OO. Effect of ω-3 polyunsaturated fatty acids on the heart mitochondria respiration in experimental diabetes mellitus. Int J Physiol Pathophysiol. 2012;3:363–370. doi: 10.1615/IntJPhysPathophys.v3.i4.80. DOI

Akbari A, Jelodar G, Nazifi S. The proposed mechanisms of radio frequency waves (RFWs) on nervous system functions impairment. Comp Clin Pathol. 2016;25:1289–1301. doi: 10.1007/s00580-015-2096-x. DOI

Guo Y, Ma B, Li X, Hui H, Zhou Y, Li N, Xie X. n-3 PUFA can reduce IL-6 and TNF levels in patients with cancer. Br J Nutr. 2023;129:54–65. doi: 10.1017/S0007114522000575. PubMed DOI

Chacińska M, Zabielski P, Książek M, Szałaj P, Jarząbek K, Kojta I, Chabowski A, Błachnio-Zabielska AU. The Impact of OMEGA-3 Fatty Acids Supplementation on Insulin Resistance and Content of Adipocytokines and Biologically Active Lipids in Adipose Tissue of High-Fat Diet Fed Rats. Nutrients. 2019;11:835. doi: 10.3390/nu11040835. PubMed DOI PMC

Akbari A, Nasiri K, Heydari M, Mosavad SM, Iraji A. The protective effect of hydroalcoholic extract of Zingiber officinale Roscoe (Ginger) on ethanol-induced reproductive toxicity in male rats. J Evid Based Complementary Altern Med. 2017;22:609–617. doi: 10.1177/2156587216687696. PubMed DOI PMC

Guo XX, Wang Y, Wang K, Ji B-P, Zhou F. Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. J Zhejiang Univ Sci B. 2018;19:559–569. doi: 10.1631/jzus.B1700254. PubMed DOI PMC

Alorabi M, Mohammed DS, Mostafa-Hedeab G, El-Sherbeni SA, Negm WA, Mohammed AIA, Al-Kuraishy HM, et al. Combination treatment of omega-3 fatty acids and vitamin C exhibited promising therapeutic effect against oxidative impairment of the liver in methotrexate-intoxicated mice. Biomed Res Int. 2022;2022:4122166. doi: 10.1155/2022/4122166. PubMed DOI PMC

Luo L, Zhu S, Akbari A, Tan B. Ginger could improve gestational diabetes by targeting genes involved in nutrient metabolism, oxidative stress, inflammation, and the WNT/β-Catenin/GSK3β signaling pathway. Nat Product Comm. 2022;17:1934578X221141276. doi: 10.1177/1934578X221141276. DOI

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/S0076-6879(84)05016-3. PubMed DOI

Buege JA. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310. doi: 10.1016/S0076-6879(78)52032-6. PubMed DOI

Drenjančević I, Pitha J. Omega-3 Polyunsaturated Fatty Acids-Vascular and Cardiac Effects on the Cellular and Molecular Level (Narrative Review) Int J Mol Sci. 2022;23:2104. doi: 10.3390/ijms23042104. PubMed DOI PMC

Hooper L, Thompson RL, Harrison RA, Summerbell CD, Moore H, Worthington HV, Durrington PN, et al. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Syst Rev. 2004;(4):CD003177. doi: 10.1002/14651858.CD003177.pub2. PubMed DOI PMC

Liu W, Gao M, Yang S, Sun C, Bi Y, Li Y, Wang J, Yuan X. Effects of omega-3 supplementation on glucose and lipid metabolism in patients with gestational diabetes: A meta-analysis of randomized controlled trials. J Diabetes Complications. 2023;37:108451. doi: 10.1016/j.jdiacomp.2023.108451. PubMed DOI

Grisanti LA. Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Front Physiol. 9:1669. doi: 10.3389/fphys.2018.01669. 26. PubMed DOI PMC

Andersen A, Bagger JI, Sørensen SK, Baldassarre MPA, Pedersen-Bjergaard U, Forman JL, Gislason G, et al. Associations of hypoglycemia, glycemic variability and risk of cardiac arrhythmias in insulin-treated patients with type 2 diabetes: a prospective, observational study. Cardiovasc Diabetol. 2021;20:241. doi: 10.1186/s12933-021-01425-0. PubMed DOI PMC

Jungen C, Scherschel K, Flenner F, Jee H, Rajendran P, De Jong KA, Nikolaev V, et al. Increased arrhythmia susceptibility in type 2 diabetic mice related to dysregulation of ventricular sympathetic innervation. Am J Physiol Heart Circ Physiol. 2019;317:H1328–H1341. doi: 10.1152/ajpheart.00249.2019. PubMed DOI PMC

Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front Pharmacol. 2020;11:72. doi: 10.3389/fphar.2020.00072. PubMed DOI PMC

Grune J, Yamazoe M, Nahrendorf M. Electroimmunology and cardiac arrhythmia. Nat Rev Cardiol. 2021;18:547–564. doi: 10.1038/s41569-021-00520-9. PubMed DOI PMC

Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res. 2020;116:1600–1619. doi: 10.1093/cvr/cvaa116. PubMed DOI PMC

Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Investig. 2014;5:623–634. doi: 10.1111/jdi.12250. PubMed DOI PMC

Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11:31–39. doi: 10.1007/s11154-010-9131-7. PubMed DOI PMC

Pashkow FJ. Oxidative Stress and Inflammation in Heart Disease: Do Antioxidants Have a Role in Treatment and/or Prevention? Int J Inflam. 2011;2011:514623. doi: 10.4061/2011/514623. PubMed DOI PMC

Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol. 2017;16:120. doi: 10.1186/s12933-017-0604-9. PubMed DOI PMC

Anderson ME. Oxidant stress promotes disease by activating CaMKII. J Mol Cell Cardiol. 2015;89:160–167. doi: 10.1016/j.yjmcc.2015.10.014. PubMed DOI PMC

Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125:2059–2070. doi: 10.1161/CIRCULATIONAHA.111.067306. PubMed DOI PMC

Dobrev D, Wehrens XHT. Calmodulin kinase II, sarcoplasmic reticulum Ca2+ leak, and atrial fibrillation. Trends Cardiovasc Med. 2010;20:30–34. doi: 10.1016/j.tcm.2010.03.004. PubMed DOI PMC

Okayama H, Hamada M, Hiwada K. Contractile dysfunction in the diabetic-rat heart is an intrinsic abnormality of the cardiac myocyte. Clin Sci (Lond) 1994;86:257–262. doi: 10.1042/cs0860257. PubMed DOI

Wold LE, Relling DP, Colligan PB, Scott GI, Hintz KK, Ren BH, Epstein PN, Ren J. Characterization of Contractile Function in Diabetic Hypertensive Cardiomyopathy in Adult Rat Ventricular Myocytes. J Mol Cell Cardiol. 2001;33:1719–1726. doi: 10.1006/jmcc.2001.1431. PubMed DOI

Mao QQ, Xu X-Y, Cao S-Y, Gan R-Y, Corke H, Beta T, Li H-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe) Foods. 2019;8:185. doi: 10.3390/foods8060185. PubMed DOI PMC

Abdi T, Mahmoudabady M, Marzouni HZ, Niazmnd S, Khazaei M. Ginger (Zingiber Officinale Roscoe) Extract Protects the Heart Against Inflammation and Fibrosis in Diabetic Rats. Can J Diabetes. 2021;45:220–227. doi: 10.1016/j.jcjd.2020.08.102. PubMed DOI

Natto ZS, Yaghmoor W, Alshaeri HK, Van Dyke TE. Omega-3 Fatty Acids Effects on Inflammatory Biomarkers and Lipid Profiles among Diabetic and Cardiovascular Disease Patients: A Systematic Review and Meta-Analysis. Sci Rep. 2019;9:18867. doi: 10.1038/s41598-019-54535-x. PubMed DOI PMC

Zivkovic AM, Telis N, German JB, Hammock BD. Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif Agric (Berkeley) 2011;65:106–111. doi: 10.3733/ca.v065n03p106. PubMed DOI PMC

Tallima H, El Ridi R. Arachidonic acid: Physiological roles and potential health benefits - A review. J Adv Res. 2017;11:33–41. doi: 10.1016/j.jare.2017.11.004. PubMed DOI PMC

Zhou Y, Khan H, Xiao J, Cheang WS. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int J Mol Sci. 2021;22:12029. doi: 10.3390/ijms222112029. PubMed DOI PMC

London B, Albert C, Anderson ME, Giles WR, Van Wagoner DR, Balk E, Billman GE, et al. Omega-3 fatty acids and cardiac arrhythmias: prior studies and recommendations for future research: a report from the National Heart, Lung, and Blood Institute and Office Of Dietary Supplements Omega-3 Fatty Acids and their Role in Cardiac Arrhythmogenesis Workshop. Circulation. 2007;116:e320–e335. doi: 10.1161/CIRCULATIONAHA.107.712984. PubMed DOI

Moreno C, Macías A, Prieto A, de la Cruz A, González T, Valenzuela C. Effects of n-3 Polyunsaturated Fatty Acids on Cardiac Ion Channels. Front Physiol. 2012;3:245. doi: 10.3389/fphys.2012.00245. PubMed DOI PMC

Sumoza-Toledo A, Penner R. TRPM2: a multifunctional ion channel for calcium signalling. J Physiol. 2011;589:1515–1525. doi: 10.1113/jphysiol.2010.201855. PubMed DOI PMC

Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci. 2022;9:895814. doi: 10.3389/fmolb.2022.895814. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...