Omega-3 Polyunsaturated Fatty Acids-Vascular and Cardiac Effects on the Cellular and Molecular Level (Narrative Review)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Grant No. NU20-01-00022 and by MH CZ - DRO ("Institute for Clinical and Experimental Medicine - IKEM, IN 00023001"; # KK.01.1.1.01.0010"
Ministry of Health of the Czech Republic, European Structural and Investment Funds, to Science Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Scientific Unit for Research, Production and Medical Testing of
PubMed
35216214
PubMed Central
PMC8879741
DOI
10.3390/ijms23042104
PII: ijms23042104
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular disease, docosahexaenoic acid, eicosapentaenoic acid, omega-3 polyunsaturated fatty acids,
- MeSH
- kardiovaskulární nemoci metabolismus prevence a kontrola MeSH
- lidé MeSH
- omega-3 mastné kyseliny metabolismus farmakologie MeSH
- srdce účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- omega-3 mastné kyseliny MeSH
In the prevention and treatment of cardiovascular disease, in addition to the already proven effective treatment of dyslipidemia, hypertension and diabetes mellitus, omega-3 polyunsaturated fatty acids (n-3 PUFAs) are considered as substances with additive effects on cardiovascular health. N-3 PUFAs combine their indirect effects on metabolic, inflammatory and thrombogenic parameters with direct effects on the cellular level. Eicosapentaenoic acid (EPA) seems to be more efficient than docosahexaenoic acid (DHA) in the favorable mitigation of atherothrombosis due to its specific molecular properties. The inferred mechanism is a more favorable effect on the cell membrane. In addition, the anti-fibrotic effects of n-3 PUFA were described, with potential impacts on heart failure with a preserved ejection fraction. Furthermore, n-3 PUFA can modify ion channels, with a favorable impact on arrhythmias. However, despite recent evidence in the prevention of cardiovascular disease by a relatively high dose of icosapent ethyl (EPA derivative), there is still a paucity of data describing the exact mechanisms of n-3 PUFAs, including the role of their particular metabolites. The purpose of this review is to discuss the effects of n-3 PUFAs at several levels of the cardiovascular system, including controversies.
Zobrazit více v PubMed
Patel D., Busch R. Omega-3 Fatty Acids and Cardiovascular Disease: A Narrative Review for Pharmacists. J. Cardiovasc. Pharmacol. Ther. 2021;26:524–532. doi: 10.1177/10742484211023715. PubMed DOI PMC
Kapoor K., Alfaddagh A., Stone N.J., Blumenthal R.S. Update on the omega-3 fatty acid trial landscape: A narrative review with implications for primary prevention. J. Clin. Lipidol. 2021;15:545–555. doi: 10.1016/j.jacl.2021.06.004. PubMed DOI
Kotlega D., Zembron-Lacny A., Golab-Janowska M., Nowacki P., Szczuko M. The Association of Free Fatty Acids and Eicosanoids with the Severity of Depressive Symptoms in Stroke Patients. Int. J. Mol. Sci. 2020;21:5220. doi: 10.3390/ijms21155220. PubMed DOI PMC
Ciappolino V., Mazzocchi A., Enrico P., Syrén M.L., Delvecchio G., Agostoni C., Brambilla P. N-3 Polyunsatured Fatty Acids in Menopausal Transition: A Systematic Review of Depressive and Cognitive Disorders with Accompanying Vasomotor Symptoms. Int. J. Mol. Sci. 2018;19:1849. doi: 10.3390/ijms19071849. PubMed DOI PMC
González-Hedström D., de la Fuente-Fernández M., Priego T., Martín A.I., Amor S., López-Calderón A., Inarejos-García A.M., García-Villalón Á.L., Granado M. Addition of Olive Leaf Extract to a Mixture of Algae and Extra Virgin Olive Oils Decreases Fatty Acid Oxidation and Synergically Attenuates Age-Induced Hypertension, Sarcopenia and Insulin Resistance in Rats. Antioxidants. 2021;10:1066. doi: 10.3390/antiox10071066. PubMed DOI PMC
Aung T., Halsey J., Kromhout D., Gerstein H.C., Marchioli R., Tavazzi L., Geleijnse J.M., Rauch B., Ness A., Galan P., et al. Omega-3 Treatment Trialists’ Collaboration. Associations of Omega-3 Fatty Acid Supplement Use with Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals. JAMA Cardiol. 2018;3:225–234. doi: 10.1001/jamacardio.2017.5205. PubMed DOI PMC
Abdelhamid A.S., Brown T.J., Brainard J.S., Biswas P., Thorpe G.C., Moore H.J., Deane K.H., Summerbell C.D., Worthington H.V., Song F., et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2020;3:CD003177. doi: 10.1002/14651858.CD003177.pub5. PubMed DOI PMC
Bhatt D.L., Steg P.G., Miller M., Brinton E.A., Jacobson T.A., Ketchum S.B., Doyle R.T., Jr., Juliano R.A., Jiao L., Granowitz C., et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019;380:11–22. doi: 10.1056/NEJMoa1812792. PubMed DOI
Budoff M.J., Bhatt D.L., Kinninger A., Lakshmanan S., Muhlestein J.B., Le V.T., May H.T., Shaikh K., Shekar C., Roy S.K., et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: Final results of the EVAPORATE trial. Eur. Heart J. 2020;41:3925–3932. doi: 10.1093/eurheartj/ehaa652. PubMed DOI PMC
Yokoyama M., Origasa H., Matsuzaki M., Matsuzawa Y., Saito Y., Ishikawa Y., Oikawa S., Sasaki J., Hishida H., Itakura H., et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–1098. doi: 10.1016/S0140-6736(07)60527-3. PubMed DOI
ASCEND Study Collaborative Group. Bowman L., Mafham M., Wallendszus K., Stevens W., Buck G., Barton J., Murphy K., Aung T., Haynes R., et al. Effects of n-3 Fatty Acid Supplements in Diabetes Mellitus. N. Engl. J. Med. 2018;379:1540–1550. doi: 10.1056/NEJMoa1804989. PubMed DOI
Nicholls S.J., Lincoff A.M., Garcia M., Bash D., Ballantyne C.M., Barter P.J., Davidson M.H., Kastelein J.J.P., Koenig W., McGuire D.K., et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA. 2020;324:2268–2280. doi: 10.1001/jama.2020.22258. PubMed DOI PMC
Unique Identifier: NCT02104817. [(accessed on 12 October 2021)]; Available online: https://www.clinicaltrials.gov.
Kalstad A.A., Myhre P.L., Laake K., Tveit S.H., Schmidt E.B., Smith P., Nilsen D.W.T., Tveit A., Fagerland M.W., Solheim S., et al. OMEMI Investigators. Effects of n-3 Fatty Acid Supplements in Elderly Patients after Myocardial Infarction: A Randomized, Controlled Trial. Circulation. 2021;143:528–539. doi: 10.1161/CIRCULATIONAHA.120.052209. PubMed DOI
Chang W.C., So J., Lamon-Fava S. Differential and shared effects of eicosapentaenoic acid and docosahexaenoic acid on serum metabolome in subjects with chronic inflammation. Sci. Rep. 2021;11:16324. doi: 10.1038/s41598-021-95590-7. PubMed DOI PMC
Pareek M., Mason R.P., Bhatt D.L. Icosapent ethyl: Safely reducing cardiovascular risk in adults with elevated triglycerides. Expert Opin. Drug Saf. 2022;21:31–42. doi: 10.1080/14740338.2021.1954158. PubMed DOI
Lombardi M., Carbone S., Del Buono M.G., Chiabrando J.G., Vescovo G.M., Camilli M., Montone R.A., Vergallo R., Abbate A., Biondi-Zoccai G., et al. Omega-3 fatty acids supplementation and risk of atrial fibrillation: An updated meta-analysis of randomized controlled trials. Eur. Heart J. Cardiovasc. Pharmacother. 2021;7:e69–e70. doi: 10.1093/ehjcvp/pvab008. PubMed DOI PMC
Doi T., Langsted A., Nordestgaard B.G. A possible explanation for the contrasting results of REDUCE-IT vs. STRENGTH: Cohort study mimicking trial designs. Eur. Heart J. 2021;42:4807–4817. doi: 10.1093/eurheartj/ehab555. PubMed DOI
Lakshmanan S., Shekar C., Kinninger A., Dahal S., Onuegbu A., Cai A.N., Hamal S., Birudaraju D., Roy S.K., Nelson J.R., et al. Comparison of mineral oil and non-mineral oil placebo on coronary plaque progression by coronary computed tomography angiography. Cardiovasc. Res. 2020;116:479–482. doi: 10.1093/cvr/cvz329. PubMed DOI PMC
Tadic M., Sala C., Grassi G., Mancia G., Taddei S., Rottbauer W., Cuspidi C. Omega-3 Fatty Acids and Coronary Artery Disease: More Questions Than Answers. J. Clin. Med. 2021;10:2495. doi: 10.3390/jcm10112495. PubMed DOI PMC
Sarajlic P., Artiach G., Larsson S.C., Back M. Dose-dependent risk reduction for myocardial infarction with eicosapentaenoic acid: A meta-analysis and metaregression including the STRENGTH trial. Cardiovasc. Drugs Ther. 2021;35:1079–1081. doi: 10.1007/s10557-021-07212-z. PubMed DOI PMC
Pirillo A., Catapano A.L. Omega-3 for Cardiovascular Diseases: Where Do We Stand after REDUCE-IT and STRENGTH? Circulation. 2021;144:183–185. doi: 10.1161/CIRCULATIONAHA.121.053144. PubMed DOI
Margină D., Ungurianu A., Purdel C., Nițulescu G.M., Tsoukalas D., Sarandi E., Thanasoula M., Burykina T.I., Tekos F., Buha A., et al. Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem. Toxicol. 2020;143:111558. doi: 10.1016/j.fct.2020.111558. PubMed DOI PMC
Elagizi A., Lavie C.J., O’Keefe E., Marshall K., O’Keefe J.H., Milani R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients. 2021;13:204. doi: 10.3390/nu13010204. PubMed DOI PMC
Iqbal T., Miller M. A Fishy Topic: VITAL, REDUCE-IT, STRENGTH, and Beyond: Putting Omega-3 Fatty Acids into Practice in 2021. Curr. Cardiol. Rep. 2021;23:111. doi: 10.1007/s11886-021-01527-x. PubMed DOI
Watanabe T., Ando K., Daidoji H., Otaki Y., Sugawara S., Matsui M., Ikeno E., Hirono O., Miyawaki H., Yashiro Y., et al. CHERRY study investigators. A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins. J. Cardiol. 2017;70:537–544. doi: 10.1016/j.jjcc.2017.07.007. PubMed DOI
ORIGIN Trial Investigators. Bosch J., Gerstein H.C., Dagenais G.R., Díaz R., Dyal L., Jung H., Maggiono A.P., Probstfield J., Ramachandran A., et al. N-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 2012;367:309–318. doi: 10.1056/NEJMoa1203859. PubMed DOI
Manson J.E., Cook N.R., Lee I.M., Christen W., Bassuk S.S., Mora S., Gibson H., Albert C.M., Gordon D., Copeland T., et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2019;380:23–32. doi: 10.1056/NEJMoa1811403. PubMed DOI PMC
Thomsen M., Varbo A., Tybjærg-Hansen A., Nordestgaard B.G. Low nonfasting triglycerides and reduced all-cause mortality: A mendelian randomization study. Clin. Chem. 2014;60:737–746. doi: 10.1373/clinchem.2013.219881. PubMed DOI
Varbo A., Nordestgaard B.G. Nonfasting Triglycerides, Low-Density Lipoprotein Cholesterol, and Heart Failure Risk: Two Cohort Studies of 113,554 Individuals. Arter. Thromb. Vasc. Biol. 2018;38:464–472. doi: 10.1161/ATVBAHA.117.310269. PubMed DOI
Annuzzi G., Rivellese A.A., Wang H., Patti L., Vaccaro O., Riccardi G., Ebbesson S.O., Comuzzie A.G., Umans J.G., Howard B.V. Lipoprotein subfractions and dietary intake of n-3 fatty acid: The Genetics of Coronary Artery Disease in Alaska Natives study. Am. J. Clin. Nutr. 2012;95:1315–1322. doi: 10.3945/ajcn.111.023887. PubMed DOI PMC
Amigó N., Akinkuolie A.O., Chiuve S.E., Correig X., Cook N.R., Mora S. Habitual Fish Consumption, ω-3 Fatty Acids, and Nuclear Magnetic Resonance Lipoprotein Subfractions in Women. J. Am. Heart Assoc. 2020;9:e014963. doi: 10.1161/JAHA.119.014963. PubMed DOI PMC
Oelrich B., Dewell A., Gardner C.D. Effect of fish oil supplementation on serum triglycerides, LDL cholesterol and LDL subfractions in hypertriglyceridemic adults. Nutr. Metab. Cardiovasc. Dis. 2013;23:350–357. doi: 10.1016/j.numecd.2011.06.003. PubMed DOI
Harris W.S., Connor W.E., Alam N., Illingworth D.R. Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. J. Lipid Res. 1988;29:1451–1460. doi: 10.1016/S0022-2275(20)38424-8. PubMed DOI
Innes J.K., Calder P.C. The Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Cardiometabolic Risk Factors: A Systematic Review. Int. J. Mol. Sci. 2018;19:532. doi: 10.3390/ijms19020532. PubMed DOI PMC
Mason R.P., Jacob R.F., Shrivastava S., Sherratt S.C.R., Chattopadhyay A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim. Biophys Acta. 2016;1858:3131–3140. doi: 10.1016/j.bbamem.2016.10.002. PubMed DOI
Mason R.P., Sherratt S.C., Jacob R.F. Eicosapentaenoic acid inhibits oxidation of ApoB-containing lipoprotein particles of different size in vitro when administered alone or in combination with atorvastatin active metabolite compared with other triglyceride-lowering agents. J. Cardiovasc. Pharmacol. 2016;68:33–40. doi: 10.1097/FJC.0000000000000379. PubMed DOI PMC
Mason R.P., Jacob R.F. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism. Biochim. Biophys. Acta. 2015;1848:502–509. doi: 10.1016/j.bbamem.2014.10.016. PubMed DOI
Mason R.P., Libby P., Bhatt D.L. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arter. Thromb. Vasc. Biol. 2020;40:1135–1147. doi: 10.1161/ATVBAHA.119.313286. PubMed DOI PMC
Masuda D., Miyata Y., Matsui S., Yamashita S. Omega-3 fatty acid ethyl esters improve low-density lipoprotein subclasses without increasing low-density lipoprotein-cholesterol levels: A phase 4, randomized study. Atherosclerosis. 2020;292:163–170. doi: 10.1016/j.atherosclerosis.2019.11.014. PubMed DOI
Pitha J., Poledne R. The Truth About Fish (Oil) in the Treatment of Dyslipidemia. Curr Atheroscler. Rep. 2021;23:10. doi: 10.1007/s11883-021-00904-9. PubMed DOI
Spencer M., Finlin B.S., Unal R., Zhu B., Morris A.J., Shipp L.R., Lee J., Walton R.G., Adu A., Erfani R., et al. Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes. 2013;62:1709–1717. doi: 10.2337/db12-1042. PubMed DOI PMC
Lee K.R., Midgette Y., Shah R. Fish Oil Derived Omega 3 Fatty Acids Suppress Adipose NLRP3 Inflammasome Signaling in Human Obesity. J. Endocr. Soc. 2018;3:504–515. doi: 10.1210/js.2018-00220. PubMed DOI PMC
Pisaniello A.D., Psaltis P.J., King P.M., Liu G., Gibson R.A., Tan J.T., Duong M., Nguyen T., Bursill C.A., Worthley M.I., et al. Omega-3 fatty acids ameliorate vascular inflammation: A rationale for their atheroprotective effects. Atherosclerosis. 2021;324:27–37. doi: 10.1016/j.atherosclerosis.2021.03.003. PubMed DOI
Mihalj M., Stupin A., Kolobarić N., Bujak I.T., Matić A., Kralik Z., Jukić I., Stupin M., Drenjančević I. Leukocyte Activation and Antioxidative Defense Are Interrelated and Moderately Modified by n-3 Polyunsaturated Fatty Acid-Enriched Eggs Consumption-Double-Blind Controlled Randomized Clinical Study. Nutrients. 2020;12:3122. doi: 10.3390/nu12103122. PubMed DOI PMC
Kolobarić N., Drenjančević I., Matić A., Šušnjara P., Mihaljević Z., Mihalj M. Dietary Intake of n-3 PUFA-Enriched Hen Eggs Changes Inflammatory Markers’ Concentration and Treg/Th17 Cells Distribution in Blood of Young Healthy Adults—A Randomised Study. Nutrients. 2021;13:1851. doi: 10.3390/nu13061851. PubMed DOI PMC
Stupin A., Rasic L., Matic A., Stupin M., Kralik Z., Kralik G., Grcevic M., Drenjancevic I. Omega-3 polyunsaturated fatty acids-enriched hen eggs consumption enhances microvascular reactivity in young healthy individuals. Appl. Physiol. Nutr. Metab. 2018;43:988–995. doi: 10.1139/apnm-2017-0735. PubMed DOI
Stupin A., Mihalj M., Kolobarić N., Šušnjara P., Kolar L., Mihaljević Z., Matić A., Stupin M., Jukić I., Kralik Z., et al. Anti-Inflammatory Potential of n-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption in Improving Microvascular Endothelial Function of Healthy Individuals-Clinical Trial. Int. J. Mol. Sci. 2020;21:4149. doi: 10.3390/ijms21114149. PubMed DOI PMC
Allam-Ndoul B., Guénard F., Barbier O., Vohl M.C. Effect of different concentrations of omega-3 fatty acids on stimulated THP-1 macrophages. Genes Nutr. 2017;12:7. doi: 10.1186/s12263-017-0554-6. PubMed DOI PMC
Koppelmann T., Pollak Y., Ben-Shahar Y., Gorelik G., Sukhotnik I. The Mechanisms of the Anti-Inflammatory and Anti-Apoptotic Effects of Omega-3 Polyunsaturated Fatty Acids during Methotrexate-Induced Intestinal Damage in Cell Line and in a Rat Model. Nutrients. 2021;13:888. doi: 10.3390/nu13030888. PubMed DOI PMC
Endo J., Arita M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol. 2016;67:22–27. doi: 10.1016/j.jjcc.2015.08.002. PubMed DOI
Soni N., Ross A.B., Scheers N., Nookaew I., Gabrielsson B.G., Sandberg A.S. The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues. Int. J. Mol. Sci. 2019;20:5895. doi: 10.3390/ijms20235895. PubMed DOI PMC
Doaei S., Gholami S., Rastgoo S., Gholamalizadeh M., Bourbour F., Bagheri S.E., Samipoor F., Akbari M.E., Shadnoush M., Ghorat F., et al. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: A randomized clinical trial. J. Transl. Med. 2021;19:128. doi: 10.1186/s12967-021-02795-5. PubMed DOI PMC
Darwesh A.M., Bassiouni W., Sosnowski D.K., Seubert J.M. Can N-3 polyunsaturated fatty acids be considered a potential adjuvant therapy for COVID-19-associated cardiovascular complications? Pharmacol. Ther. 2021;219:107703. doi: 10.1016/j.pharmthera.2020.107703. PubMed DOI PMC
Díaz R. PREPARE-IT 2: A pragmatic trial evaluating icosapent ethyl in nonhospitalized patients with a positive diagnosis of COVID-19 to reduce hospitalization rates and complications; Proceedings of the American Heart Association’s Scientific Sessions 2021; Boston, MA, USA. 13–15 November 2021.
Kosmopoulos A., Bhatt D.L., Meglis G., Verma R., Pan Y., Quan A., Teoh H., Verma M., Jiao L., Wang R., et al. A randomized trial of icosapent ethyl in ambulatory patients with COVID-19. iScience. 2021;24:103040. doi: 10.1016/j.isci.2021.103040. PubMed DOI PMC
Dyerberg J., Bang H.O., Stoffersen E., Moncada S., Vane J.R. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet. 1978;2:117–119. doi: 10.1016/S0140-6736(78)91505-2. PubMed DOI
Dona M., Fredman G., Schwab J.M., Chiang N., Arita M., Goodarzi A., Cheng G., von Andrian U.H., Serhan C.N. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood. 2008;112:848–855. doi: 10.1182/blood-2007-11-122598. PubMed DOI PMC
Stupin M., Kibel A., Stupin A., Selthofer-Relatić K., Matić A., Mihalj M., Mihaljević Z., Jukić I., Drenjančević I. The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA Intake? Front. Physiol. 2019;10:1129. doi: 10.3389/fphys.2019.01129. PubMed DOI PMC
Shahar E., Folsom A.R., Wu K.K., Dennis B.H., Shimakawa T., Conlan M.G., Davis C.E., Williams O.D. Associations of fish intake and dietary n-3 polyunsaturated fatty acids with a hypocoagulable profile. The Atherosclerosis Risk in Communities (ARIC) Study. Arter. Thromb. 1993;13:1205–1212. doi: 10.1161/01.ATV.13.8.1205. PubMed DOI
Cawood A.L., Ding R., Napper F.L., Young R.H., Williams J.A., Ward M.J., Gudmundsen O., Vige R., Payne S.P., Ye S., et al. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis. 2010;212:252–259. doi: 10.1016/j.atherosclerosis.2010.05.022. PubMed DOI
Sherratt S.C.R., Juliano R.A., Mason R.P. Eicosapentaenoic acid (EPA) has optimal chain length and degree of unsaturation to inhibit oxidation of small dense LDL and membrane cholesterol domains as compared to related fatty acids in vitro. Biochim. Biophys. Acta Biomembr. 2020;1862:183254. doi: 10.1016/j.bbamem.2020.183254. PubMed DOI
Earley S., Pauyo T., Drapp R., Tavares M.J., Liedtke W., Brayden J.E. TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H1096–H1102. doi: 10.1152/ajpheart.00241.2009. PubMed DOI PMC
Namiranian K., Lloyd E.E., Crossland R.F., Marrelli S.P., Taffet G.E., Reddy A.K., Hartley C.J., Bryan R.M., Jr. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1. AJP Integr. Comp. Physiol. 2010;299:R461–R469. doi: 10.1152/ajpregu.00057.2010. PubMed DOI PMC
Goto K., Ohtsubo T., Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int. J. Mol. Sci. 2018;19:315. doi: 10.3390/ijms19010315. PubMed DOI PMC
Li X., Hong S., Li P.L., Zhang Y. Docosahexanoic acid-induced coronary arterial dilation: Actions of 17S-hydroxy docosahexanoic acid on K+ channel activity. J. Pharmacol. Exp. Ther. 2011;336:891–899. doi: 10.1124/jpet.110.176461. PubMed DOI PMC
Caires R., Sierra-Valdez F.J., Millet J.R.M., Herwig J.D., Roan E., Vásquez V., Cordero-Morales J.F. Omega-3 Fatty Acids Modulate TRPV4 Function through Plasma Membrane Remodeling. Cell Rep. 2017;21:246–258. doi: 10.1016/j.celrep.2017.09.029. PubMed DOI PMC
Engler M.B., Ma Y.H., Engler M.M. Calcium-mediated mechanisms of eicosapentaenoic acid-induced relaxation in hypertensive rat aorta. Am. J. Hypertens. 1999;12:1225–1235. doi: 10.1016/S0895-7061(99)90060-2. PubMed DOI
Wu Y., Zhang C., Dong Y., Wang S., Song P., Viollet B., Zou M.-H. Activation of the AMP-activated protein kinase by eicosapentaenoic acid (EPA, 20:5 n-3) improves endothelial function in vivo. PLoS ONE. 2012;7:e35508. doi: 10.1371/journal.pone.0035508. PubMed DOI PMC
Van den Elsen L.W.J., Spijkers L.J.A., van den Akker R.F.P., van Winssen A.M.H., Balvers M., Wijesinghe D.S., Chalfant C.E., Garssen J., Willemsen L.E.M., Alewijnse A.E., et al. Dietary fish oil improves endothelial function and lowers blood pressure via suppression of sphingolipid-mediated contractions in spontaneously hypertensive rats. J. Hypertens. 2014;32:1050–1058. doi: 10.1097/HJH.0000000000000131. PubMed DOI PMC
Gwon D.H., Hwang T.W., Ro J.Y., Kang Y.J., Jeong J.Y., Kim D.K., Lim K., Kim D.W., Choi D.E., Kim J.J. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice. Int. J. Mol. Sci. 2017;18:2081. doi: 10.3390/ijms18102081. PubMed DOI PMC
Demaison L., Sergiel J.P., Moreau D., Grynberg A. Influence of the phospholipid n-6/n-3 polyunsaturated fatty acid ratio on the mitochondrial oxidative metabolism before and after myocardial ischemia. Biochim. Biophys. Acta. 1994;1227:53–59. doi: 10.1016/0925-4439(94)90106-6. PubMed DOI
O’Connell T.D., Block R.C., Huang S.P., Shearer G.C. ω3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4. J. Mol. Cell Cardiol. 2017;103:74–92. doi: 10.1016/j.yjmcc.2016.12.003. PubMed DOI PMC
Eclov J.A., Qian Q., Redetzke R., Chen Q., Wu S.C., Healy C.L., Ortmeier S.B., Harmon E., Shearer G.C., O’Connell T.D. EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: Potential role of free fatty acid receptor 4. J. Lipid Res. 2015;56:2297–2308. doi: 10.1194/jlr.M062034. PubMed DOI PMC
Matsuo N., Miyoshi T., Takaishi A., Kishinoue T., Yasuhara K., Tanimoto M., Nakano Y., Onishi N., Ueeda M., Ito H. High Plasma Docosahexaenoic Acid Associated to Better Prognoses of Patients with Acute Decompensated Heart Failure with Preserved Ejection Fraction. Nutrients. 2021;13:371. doi: 10.3390/nu13020371. PubMed DOI PMC
Białek M., Białek A., Czauderna M. Maternal and Early Postnatal Diet Supplemented with Conjugated Linoleic Acid Isomers Affect Lipid Profile in Hearts of Offspring Rats with Mammary Tumors. Animals. 2020;10:464. doi: 10.3390/ani10030464. PubMed DOI PMC
Białek A., Białek M., Lepionka T., Ruszczyńska A., Bulska E., Czauderna M. Cancer Influences the Elemental Composition of the Myocardium More Strongly than Conjugated Linoleic Acids-Chemometric Approach to Cardio-Oncological Studies. Molecules. 2021;26:7127. doi: 10.3390/molecules26237127. PubMed DOI PMC
Ramirez J.L., Gasper W.J., Khetani S.A., Zahner G.J., Hills N.K., Mitchell P.T., Sansbury B.E., Conte M.S., Spite M., Grenon S.M. Fish Oil Increases Specialized Pro-resolving Lipid Mediators in PAD (The OMEGA-PAD II Trial) Randomized Controlled Trial. J. Surg. Res. 2019;238:164–174. doi: 10.1016/j.jss.2019.01.038. PubMed DOI PMC
Sawada T., Tsubata H., Hashimoto N., Takabe M., Miyata T., Aoki K., Yamashita S., Oishi S., Osue T., Yokoi K., et al. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial. Cardiovasc. Diabetol. 2016;15:121. doi: 10.1186/s12933-016-0437-y. PubMed DOI PMC
Filipovic M.G., Aeschbacher S., Reiner M.F., Stivala S., Gobbato S., Bonetti N., Risch M., Risch L., Camici G.G., Luescher T.F., et al. Whole blood omega-3 fatty acid concentrations are inversely associated with blood pressure in young, healthy adults. J. Hypertens. 2018;36:548–1554. doi: 10.1097/HJH.0000000000001728. PubMed DOI PMC
Colussi G.L., Catena C., Dialti V., Mos L., Sechi L.A. The vascular response to vasodilators is related to the membrane content of polyunsaturated fatty acids in hypertensive patients. J. Hypertens. 2015;33:993–1000. doi: 10.1097/HJH.0000000000000495. PubMed DOI
Strand E., Pedersen E.R., Svingen G.F.T., Schartum-Hansen H., Rebnord E.W., Bjørndal B., Seifert R., Bohov P., Meyer K., Hiltunen J.K., et al. Dietary intake of n-3 long-chain polyunsaturated fatty acids and risk of myocardial infarction in coronary artery disease patients with or without diabetes mellitus: A prospective cohort study. BMC Med. 2013;11:216. doi: 10.1186/1741-7015-11-216. PubMed DOI PMC