Omega-3 Polyunsaturated Fatty Acids-Vascular and Cardiac Effects on the Cellular and Molecular Level (Narrative Review)

. 2022 Feb 14 ; 23 (4) : . [epub] 20220214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35216214

Grantová podpora
Grant No. NU20-01-00022 and by MH CZ - DRO ("Institute for Clinical and Experimental Medicine - IKEM, IN 00023001"; # KK.01.1.1.01.0010" Ministry of Health of the Czech Republic, European Structural and Investment Funds, to Science Centre of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Scientific Unit for Research, Production and Medical Testing of

In the prevention and treatment of cardiovascular disease, in addition to the already proven effective treatment of dyslipidemia, hypertension and diabetes mellitus, omega-3 polyunsaturated fatty acids (n-3 PUFAs) are considered as substances with additive effects on cardiovascular health. N-3 PUFAs combine their indirect effects on metabolic, inflammatory and thrombogenic parameters with direct effects on the cellular level. Eicosapentaenoic acid (EPA) seems to be more efficient than docosahexaenoic acid (DHA) in the favorable mitigation of atherothrombosis due to its specific molecular properties. The inferred mechanism is a more favorable effect on the cell membrane. In addition, the anti-fibrotic effects of n-3 PUFA were described, with potential impacts on heart failure with a preserved ejection fraction. Furthermore, n-3 PUFA can modify ion channels, with a favorable impact on arrhythmias. However, despite recent evidence in the prevention of cardiovascular disease by a relatively high dose of icosapent ethyl (EPA derivative), there is still a paucity of data describing the exact mechanisms of n-3 PUFAs, including the role of their particular metabolites. The purpose of this review is to discuss the effects of n-3 PUFAs at several levels of the cardiovascular system, including controversies.

Zobrazit více v PubMed

Patel D., Busch R. Omega-3 Fatty Acids and Cardiovascular Disease: A Narrative Review for Pharmacists. J. Cardiovasc. Pharmacol. Ther. 2021;26:524–532. doi: 10.1177/10742484211023715. PubMed DOI PMC

Kapoor K., Alfaddagh A., Stone N.J., Blumenthal R.S. Update on the omega-3 fatty acid trial landscape: A narrative review with implications for primary prevention. J. Clin. Lipidol. 2021;15:545–555. doi: 10.1016/j.jacl.2021.06.004. PubMed DOI

Kotlega D., Zembron-Lacny A., Golab-Janowska M., Nowacki P., Szczuko M. The Association of Free Fatty Acids and Eicosanoids with the Severity of Depressive Symptoms in Stroke Patients. Int. J. Mol. Sci. 2020;21:5220. doi: 10.3390/ijms21155220. PubMed DOI PMC

Ciappolino V., Mazzocchi A., Enrico P., Syrén M.L., Delvecchio G., Agostoni C., Brambilla P. N-3 Polyunsatured Fatty Acids in Menopausal Transition: A Systematic Review of Depressive and Cognitive Disorders with Accompanying Vasomotor Symptoms. Int. J. Mol. Sci. 2018;19:1849. doi: 10.3390/ijms19071849. PubMed DOI PMC

González-Hedström D., de la Fuente-Fernández M., Priego T., Martín A.I., Amor S., López-Calderón A., Inarejos-García A.M., García-Villalón Á.L., Granado M. Addition of Olive Leaf Extract to a Mixture of Algae and Extra Virgin Olive Oils Decreases Fatty Acid Oxidation and Synergically Attenuates Age-Induced Hypertension, Sarcopenia and Insulin Resistance in Rats. Antioxidants. 2021;10:1066. doi: 10.3390/antiox10071066. PubMed DOI PMC

Aung T., Halsey J., Kromhout D., Gerstein H.C., Marchioli R., Tavazzi L., Geleijnse J.M., Rauch B., Ness A., Galan P., et al. Omega-3 Treatment Trialists’ Collaboration. Associations of Omega-3 Fatty Acid Supplement Use with Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals. JAMA Cardiol. 2018;3:225–234. doi: 10.1001/jamacardio.2017.5205. PubMed DOI PMC

Abdelhamid A.S., Brown T.J., Brainard J.S., Biswas P., Thorpe G.C., Moore H.J., Deane K.H., Summerbell C.D., Worthington H.V., Song F., et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2020;3:CD003177. doi: 10.1002/14651858.CD003177.pub5. PubMed DOI PMC

Bhatt D.L., Steg P.G., Miller M., Brinton E.A., Jacobson T.A., Ketchum S.B., Doyle R.T., Jr., Juliano R.A., Jiao L., Granowitz C., et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019;380:11–22. doi: 10.1056/NEJMoa1812792. PubMed DOI

Budoff M.J., Bhatt D.L., Kinninger A., Lakshmanan S., Muhlestein J.B., Le V.T., May H.T., Shaikh K., Shekar C., Roy S.K., et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: Final results of the EVAPORATE trial. Eur. Heart J. 2020;41:3925–3932. doi: 10.1093/eurheartj/ehaa652. PubMed DOI PMC

Yokoyama M., Origasa H., Matsuzaki M., Matsuzawa Y., Saito Y., Ishikawa Y., Oikawa S., Sasaki J., Hishida H., Itakura H., et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–1098. doi: 10.1016/S0140-6736(07)60527-3. PubMed DOI

ASCEND Study Collaborative Group. Bowman L., Mafham M., Wallendszus K., Stevens W., Buck G., Barton J., Murphy K., Aung T., Haynes R., et al. Effects of n-3 Fatty Acid Supplements in Diabetes Mellitus. N. Engl. J. Med. 2018;379:1540–1550. doi: 10.1056/NEJMoa1804989. PubMed DOI

Nicholls S.J., Lincoff A.M., Garcia M., Bash D., Ballantyne C.M., Barter P.J., Davidson M.H., Kastelein J.J.P., Koenig W., McGuire D.K., et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA. 2020;324:2268–2280. doi: 10.1001/jama.2020.22258. PubMed DOI PMC

Unique Identifier: NCT02104817. [(accessed on 12 October 2021)]; Available online: https://www.clinicaltrials.gov.

Kalstad A.A., Myhre P.L., Laake K., Tveit S.H., Schmidt E.B., Smith P., Nilsen D.W.T., Tveit A., Fagerland M.W., Solheim S., et al. OMEMI Investigators. Effects of n-3 Fatty Acid Supplements in Elderly Patients after Myocardial Infarction: A Randomized, Controlled Trial. Circulation. 2021;143:528–539. doi: 10.1161/CIRCULATIONAHA.120.052209. PubMed DOI

Chang W.C., So J., Lamon-Fava S. Differential and shared effects of eicosapentaenoic acid and docosahexaenoic acid on serum metabolome in subjects with chronic inflammation. Sci. Rep. 2021;11:16324. doi: 10.1038/s41598-021-95590-7. PubMed DOI PMC

Pareek M., Mason R.P., Bhatt D.L. Icosapent ethyl: Safely reducing cardiovascular risk in adults with elevated triglycerides. Expert Opin. Drug Saf. 2022;21:31–42. doi: 10.1080/14740338.2021.1954158. PubMed DOI

Lombardi M., Carbone S., Del Buono M.G., Chiabrando J.G., Vescovo G.M., Camilli M., Montone R.A., Vergallo R., Abbate A., Biondi-Zoccai G., et al. Omega-3 fatty acids supplementation and risk of atrial fibrillation: An updated meta-analysis of randomized controlled trials. Eur. Heart J. Cardiovasc. Pharmacother. 2021;7:e69–e70. doi: 10.1093/ehjcvp/pvab008. PubMed DOI PMC

Doi T., Langsted A., Nordestgaard B.G. A possible explanation for the contrasting results of REDUCE-IT vs. STRENGTH: Cohort study mimicking trial designs. Eur. Heart J. 2021;42:4807–4817. doi: 10.1093/eurheartj/ehab555. PubMed DOI

Lakshmanan S., Shekar C., Kinninger A., Dahal S., Onuegbu A., Cai A.N., Hamal S., Birudaraju D., Roy S.K., Nelson J.R., et al. Comparison of mineral oil and non-mineral oil placebo on coronary plaque progression by coronary computed tomography angiography. Cardiovasc. Res. 2020;116:479–482. doi: 10.1093/cvr/cvz329. PubMed DOI PMC

Tadic M., Sala C., Grassi G., Mancia G., Taddei S., Rottbauer W., Cuspidi C. Omega-3 Fatty Acids and Coronary Artery Disease: More Questions Than Answers. J. Clin. Med. 2021;10:2495. doi: 10.3390/jcm10112495. PubMed DOI PMC

Sarajlic P., Artiach G., Larsson S.C., Back M. Dose-dependent risk reduction for myocardial infarction with eicosapentaenoic acid: A meta-analysis and metaregression including the STRENGTH trial. Cardiovasc. Drugs Ther. 2021;35:1079–1081. doi: 10.1007/s10557-021-07212-z. PubMed DOI PMC

Pirillo A., Catapano A.L. Omega-3 for Cardiovascular Diseases: Where Do We Stand after REDUCE-IT and STRENGTH? Circulation. 2021;144:183–185. doi: 10.1161/CIRCULATIONAHA.121.053144. PubMed DOI

Margină D., Ungurianu A., Purdel C., Nițulescu G.M., Tsoukalas D., Sarandi E., Thanasoula M., Burykina T.I., Tekos F., Buha A., et al. Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem. Toxicol. 2020;143:111558. doi: 10.1016/j.fct.2020.111558. PubMed DOI PMC

Elagizi A., Lavie C.J., O’Keefe E., Marshall K., O’Keefe J.H., Milani R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients. 2021;13:204. doi: 10.3390/nu13010204. PubMed DOI PMC

Iqbal T., Miller M. A Fishy Topic: VITAL, REDUCE-IT, STRENGTH, and Beyond: Putting Omega-3 Fatty Acids into Practice in 2021. Curr. Cardiol. Rep. 2021;23:111. doi: 10.1007/s11886-021-01527-x. PubMed DOI

Watanabe T., Ando K., Daidoji H., Otaki Y., Sugawara S., Matsui M., Ikeno E., Hirono O., Miyawaki H., Yashiro Y., et al. CHERRY study investigators. A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins. J. Cardiol. 2017;70:537–544. doi: 10.1016/j.jjcc.2017.07.007. PubMed DOI

ORIGIN Trial Investigators. Bosch J., Gerstein H.C., Dagenais G.R., Díaz R., Dyal L., Jung H., Maggiono A.P., Probstfield J., Ramachandran A., et al. N-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 2012;367:309–318. doi: 10.1056/NEJMoa1203859. PubMed DOI

Manson J.E., Cook N.R., Lee I.M., Christen W., Bassuk S.S., Mora S., Gibson H., Albert C.M., Gordon D., Copeland T., et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2019;380:23–32. doi: 10.1056/NEJMoa1811403. PubMed DOI PMC

Thomsen M., Varbo A., Tybjærg-Hansen A., Nordestgaard B.G. Low nonfasting triglycerides and reduced all-cause mortality: A mendelian randomization study. Clin. Chem. 2014;60:737–746. doi: 10.1373/clinchem.2013.219881. PubMed DOI

Varbo A., Nordestgaard B.G. Nonfasting Triglycerides, Low-Density Lipoprotein Cholesterol, and Heart Failure Risk: Two Cohort Studies of 113,554 Individuals. Arter. Thromb. Vasc. Biol. 2018;38:464–472. doi: 10.1161/ATVBAHA.117.310269. PubMed DOI

Annuzzi G., Rivellese A.A., Wang H., Patti L., Vaccaro O., Riccardi G., Ebbesson S.O., Comuzzie A.G., Umans J.G., Howard B.V. Lipoprotein subfractions and dietary intake of n-3 fatty acid: The Genetics of Coronary Artery Disease in Alaska Natives study. Am. J. Clin. Nutr. 2012;95:1315–1322. doi: 10.3945/ajcn.111.023887. PubMed DOI PMC

Amigó N., Akinkuolie A.O., Chiuve S.E., Correig X., Cook N.R., Mora S. Habitual Fish Consumption, ω-3 Fatty Acids, and Nuclear Magnetic Resonance Lipoprotein Subfractions in Women. J. Am. Heart Assoc. 2020;9:e014963. doi: 10.1161/JAHA.119.014963. PubMed DOI PMC

Oelrich B., Dewell A., Gardner C.D. Effect of fish oil supplementation on serum triglycerides, LDL cholesterol and LDL subfractions in hypertriglyceridemic adults. Nutr. Metab. Cardiovasc. Dis. 2013;23:350–357. doi: 10.1016/j.numecd.2011.06.003. PubMed DOI

Harris W.S., Connor W.E., Alam N., Illingworth D.R. Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. J. Lipid Res. 1988;29:1451–1460. doi: 10.1016/S0022-2275(20)38424-8. PubMed DOI

Innes J.K., Calder P.C. The Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Cardiometabolic Risk Factors: A Systematic Review. Int. J. Mol. Sci. 2018;19:532. doi: 10.3390/ijms19020532. PubMed DOI PMC

Mason R.P., Jacob R.F., Shrivastava S., Sherratt S.C.R., Chattopadhyay A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim. Biophys Acta. 2016;1858:3131–3140. doi: 10.1016/j.bbamem.2016.10.002. PubMed DOI

Mason R.P., Sherratt S.C., Jacob R.F. Eicosapentaenoic acid inhibits oxidation of ApoB-containing lipoprotein particles of different size in vitro when administered alone or in combination with atorvastatin active metabolite compared with other triglyceride-lowering agents. J. Cardiovasc. Pharmacol. 2016;68:33–40. doi: 10.1097/FJC.0000000000000379. PubMed DOI PMC

Mason R.P., Jacob R.F. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism. Biochim. Biophys. Acta. 2015;1848:502–509. doi: 10.1016/j.bbamem.2014.10.016. PubMed DOI

Mason R.P., Libby P., Bhatt D.L. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arter. Thromb. Vasc. Biol. 2020;40:1135–1147. doi: 10.1161/ATVBAHA.119.313286. PubMed DOI PMC

Masuda D., Miyata Y., Matsui S., Yamashita S. Omega-3 fatty acid ethyl esters improve low-density lipoprotein subclasses without increasing low-density lipoprotein-cholesterol levels: A phase 4, randomized study. Atherosclerosis. 2020;292:163–170. doi: 10.1016/j.atherosclerosis.2019.11.014. PubMed DOI

Pitha J., Poledne R. The Truth About Fish (Oil) in the Treatment of Dyslipidemia. Curr Atheroscler. Rep. 2021;23:10. doi: 10.1007/s11883-021-00904-9. PubMed DOI

Spencer M., Finlin B.S., Unal R., Zhu B., Morris A.J., Shipp L.R., Lee J., Walton R.G., Adu A., Erfani R., et al. Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes. 2013;62:1709–1717. doi: 10.2337/db12-1042. PubMed DOI PMC

Lee K.R., Midgette Y., Shah R. Fish Oil Derived Omega 3 Fatty Acids Suppress Adipose NLRP3 Inflammasome Signaling in Human Obesity. J. Endocr. Soc. 2018;3:504–515. doi: 10.1210/js.2018-00220. PubMed DOI PMC

Pisaniello A.D., Psaltis P.J., King P.M., Liu G., Gibson R.A., Tan J.T., Duong M., Nguyen T., Bursill C.A., Worthley M.I., et al. Omega-3 fatty acids ameliorate vascular inflammation: A rationale for their atheroprotective effects. Atherosclerosis. 2021;324:27–37. doi: 10.1016/j.atherosclerosis.2021.03.003. PubMed DOI

Mihalj M., Stupin A., Kolobarić N., Bujak I.T., Matić A., Kralik Z., Jukić I., Stupin M., Drenjančević I. Leukocyte Activation and Antioxidative Defense Are Interrelated and Moderately Modified by n-3 Polyunsaturated Fatty Acid-Enriched Eggs Consumption-Double-Blind Controlled Randomized Clinical Study. Nutrients. 2020;12:3122. doi: 10.3390/nu12103122. PubMed DOI PMC

Kolobarić N., Drenjančević I., Matić A., Šušnjara P., Mihaljević Z., Mihalj M. Dietary Intake of n-3 PUFA-Enriched Hen Eggs Changes Inflammatory Markers’ Concentration and Treg/Th17 Cells Distribution in Blood of Young Healthy Adults—A Randomised Study. Nutrients. 2021;13:1851. doi: 10.3390/nu13061851. PubMed DOI PMC

Stupin A., Rasic L., Matic A., Stupin M., Kralik Z., Kralik G., Grcevic M., Drenjancevic I. Omega-3 polyunsaturated fatty acids-enriched hen eggs consumption enhances microvascular reactivity in young healthy individuals. Appl. Physiol. Nutr. Metab. 2018;43:988–995. doi: 10.1139/apnm-2017-0735. PubMed DOI

Stupin A., Mihalj M., Kolobarić N., Šušnjara P., Kolar L., Mihaljević Z., Matić A., Stupin M., Jukić I., Kralik Z., et al. Anti-Inflammatory Potential of n-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption in Improving Microvascular Endothelial Function of Healthy Individuals-Clinical Trial. Int. J. Mol. Sci. 2020;21:4149. doi: 10.3390/ijms21114149. PubMed DOI PMC

Allam-Ndoul B., Guénard F., Barbier O., Vohl M.C. Effect of different concentrations of omega-3 fatty acids on stimulated THP-1 macrophages. Genes Nutr. 2017;12:7. doi: 10.1186/s12263-017-0554-6. PubMed DOI PMC

Koppelmann T., Pollak Y., Ben-Shahar Y., Gorelik G., Sukhotnik I. The Mechanisms of the Anti-Inflammatory and Anti-Apoptotic Effects of Omega-3 Polyunsaturated Fatty Acids during Methotrexate-Induced Intestinal Damage in Cell Line and in a Rat Model. Nutrients. 2021;13:888. doi: 10.3390/nu13030888. PubMed DOI PMC

Endo J., Arita M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol. 2016;67:22–27. doi: 10.1016/j.jjcc.2015.08.002. PubMed DOI

Soni N., Ross A.B., Scheers N., Nookaew I., Gabrielsson B.G., Sandberg A.S. The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues. Int. J. Mol. Sci. 2019;20:5895. doi: 10.3390/ijms20235895. PubMed DOI PMC

Doaei S., Gholami S., Rastgoo S., Gholamalizadeh M., Bourbour F., Bagheri S.E., Samipoor F., Akbari M.E., Shadnoush M., Ghorat F., et al. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: A randomized clinical trial. J. Transl. Med. 2021;19:128. doi: 10.1186/s12967-021-02795-5. PubMed DOI PMC

Darwesh A.M., Bassiouni W., Sosnowski D.K., Seubert J.M. Can N-3 polyunsaturated fatty acids be considered a potential adjuvant therapy for COVID-19-associated cardiovascular complications? Pharmacol. Ther. 2021;219:107703. doi: 10.1016/j.pharmthera.2020.107703. PubMed DOI PMC

Díaz R. PREPARE-IT 2: A pragmatic trial evaluating icosapent ethyl in nonhospitalized patients with a positive diagnosis of COVID-19 to reduce hospitalization rates and complications; Proceedings of the American Heart Association’s Scientific Sessions 2021; Boston, MA, USA. 13–15 November 2021.

Kosmopoulos A., Bhatt D.L., Meglis G., Verma R., Pan Y., Quan A., Teoh H., Verma M., Jiao L., Wang R., et al. A randomized trial of icosapent ethyl in ambulatory patients with COVID-19. iScience. 2021;24:103040. doi: 10.1016/j.isci.2021.103040. PubMed DOI PMC

Dyerberg J., Bang H.O., Stoffersen E., Moncada S., Vane J.R. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet. 1978;2:117–119. doi: 10.1016/S0140-6736(78)91505-2. PubMed DOI

Dona M., Fredman G., Schwab J.M., Chiang N., Arita M., Goodarzi A., Cheng G., von Andrian U.H., Serhan C.N. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood. 2008;112:848–855. doi: 10.1182/blood-2007-11-122598. PubMed DOI PMC

Stupin M., Kibel A., Stupin A., Selthofer-Relatić K., Matić A., Mihalj M., Mihaljević Z., Jukić I., Drenjančević I. The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA Intake? Front. Physiol. 2019;10:1129. doi: 10.3389/fphys.2019.01129. PubMed DOI PMC

Shahar E., Folsom A.R., Wu K.K., Dennis B.H., Shimakawa T., Conlan M.G., Davis C.E., Williams O.D. Associations of fish intake and dietary n-3 polyunsaturated fatty acids with a hypocoagulable profile. The Atherosclerosis Risk in Communities (ARIC) Study. Arter. Thromb. 1993;13:1205–1212. doi: 10.1161/01.ATV.13.8.1205. PubMed DOI

Cawood A.L., Ding R., Napper F.L., Young R.H., Williams J.A., Ward M.J., Gudmundsen O., Vige R., Payne S.P., Ye S., et al. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis. 2010;212:252–259. doi: 10.1016/j.atherosclerosis.2010.05.022. PubMed DOI

Sherratt S.C.R., Juliano R.A., Mason R.P. Eicosapentaenoic acid (EPA) has optimal chain length and degree of unsaturation to inhibit oxidation of small dense LDL and membrane cholesterol domains as compared to related fatty acids in vitro. Biochim. Biophys. Acta Biomembr. 2020;1862:183254. doi: 10.1016/j.bbamem.2020.183254. PubMed DOI

Earley S., Pauyo T., Drapp R., Tavares M.J., Liedtke W., Brayden J.E. TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H1096–H1102. doi: 10.1152/ajpheart.00241.2009. PubMed DOI PMC

Namiranian K., Lloyd E.E., Crossland R.F., Marrelli S.P., Taffet G.E., Reddy A.K., Hartley C.J., Bryan R.M., Jr. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1. AJP Integr. Comp. Physiol. 2010;299:R461–R469. doi: 10.1152/ajpregu.00057.2010. PubMed DOI PMC

Goto K., Ohtsubo T., Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int. J. Mol. Sci. 2018;19:315. doi: 10.3390/ijms19010315. PubMed DOI PMC

Li X., Hong S., Li P.L., Zhang Y. Docosahexanoic acid-induced coronary arterial dilation: Actions of 17S-hydroxy docosahexanoic acid on K+ channel activity. J. Pharmacol. Exp. Ther. 2011;336:891–899. doi: 10.1124/jpet.110.176461. PubMed DOI PMC

Caires R., Sierra-Valdez F.J., Millet J.R.M., Herwig J.D., Roan E., Vásquez V., Cordero-Morales J.F. Omega-3 Fatty Acids Modulate TRPV4 Function through Plasma Membrane Remodeling. Cell Rep. 2017;21:246–258. doi: 10.1016/j.celrep.2017.09.029. PubMed DOI PMC

Engler M.B., Ma Y.H., Engler M.M. Calcium-mediated mechanisms of eicosapentaenoic acid-induced relaxation in hypertensive rat aorta. Am. J. Hypertens. 1999;12:1225–1235. doi: 10.1016/S0895-7061(99)90060-2. PubMed DOI

Wu Y., Zhang C., Dong Y., Wang S., Song P., Viollet B., Zou M.-H. Activation of the AMP-activated protein kinase by eicosapentaenoic acid (EPA, 20:5 n-3) improves endothelial function in vivo. PLoS ONE. 2012;7:e35508. doi: 10.1371/journal.pone.0035508. PubMed DOI PMC

Van den Elsen L.W.J., Spijkers L.J.A., van den Akker R.F.P., van Winssen A.M.H., Balvers M., Wijesinghe D.S., Chalfant C.E., Garssen J., Willemsen L.E.M., Alewijnse A.E., et al. Dietary fish oil improves endothelial function and lowers blood pressure via suppression of sphingolipid-mediated contractions in spontaneously hypertensive rats. J. Hypertens. 2014;32:1050–1058. doi: 10.1097/HJH.0000000000000131. PubMed DOI PMC

Gwon D.H., Hwang T.W., Ro J.Y., Kang Y.J., Jeong J.Y., Kim D.K., Lim K., Kim D.W., Choi D.E., Kim J.J. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice. Int. J. Mol. Sci. 2017;18:2081. doi: 10.3390/ijms18102081. PubMed DOI PMC

Demaison L., Sergiel J.P., Moreau D., Grynberg A. Influence of the phospholipid n-6/n-3 polyunsaturated fatty acid ratio on the mitochondrial oxidative metabolism before and after myocardial ischemia. Biochim. Biophys. Acta. 1994;1227:53–59. doi: 10.1016/0925-4439(94)90106-6. PubMed DOI

O’Connell T.D., Block R.C., Huang S.P., Shearer G.C. ω3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4. J. Mol. Cell Cardiol. 2017;103:74–92. doi: 10.1016/j.yjmcc.2016.12.003. PubMed DOI PMC

Eclov J.A., Qian Q., Redetzke R., Chen Q., Wu S.C., Healy C.L., Ortmeier S.B., Harmon E., Shearer G.C., O’Connell T.D. EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: Potential role of free fatty acid receptor 4. J. Lipid Res. 2015;56:2297–2308. doi: 10.1194/jlr.M062034. PubMed DOI PMC

Matsuo N., Miyoshi T., Takaishi A., Kishinoue T., Yasuhara K., Tanimoto M., Nakano Y., Onishi N., Ueeda M., Ito H. High Plasma Docosahexaenoic Acid Associated to Better Prognoses of Patients with Acute Decompensated Heart Failure with Preserved Ejection Fraction. Nutrients. 2021;13:371. doi: 10.3390/nu13020371. PubMed DOI PMC

Białek M., Białek A., Czauderna M. Maternal and Early Postnatal Diet Supplemented with Conjugated Linoleic Acid Isomers Affect Lipid Profile in Hearts of Offspring Rats with Mammary Tumors. Animals. 2020;10:464. doi: 10.3390/ani10030464. PubMed DOI PMC

Białek A., Białek M., Lepionka T., Ruszczyńska A., Bulska E., Czauderna M. Cancer Influences the Elemental Composition of the Myocardium More Strongly than Conjugated Linoleic Acids-Chemometric Approach to Cardio-Oncological Studies. Molecules. 2021;26:7127. doi: 10.3390/molecules26237127. PubMed DOI PMC

Ramirez J.L., Gasper W.J., Khetani S.A., Zahner G.J., Hills N.K., Mitchell P.T., Sansbury B.E., Conte M.S., Spite M., Grenon S.M. Fish Oil Increases Specialized Pro-resolving Lipid Mediators in PAD (The OMEGA-PAD II Trial) Randomized Controlled Trial. J. Surg. Res. 2019;238:164–174. doi: 10.1016/j.jss.2019.01.038. PubMed DOI PMC

Sawada T., Tsubata H., Hashimoto N., Takabe M., Miyata T., Aoki K., Yamashita S., Oishi S., Osue T., Yokoi K., et al. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial. Cardiovasc. Diabetol. 2016;15:121. doi: 10.1186/s12933-016-0437-y. PubMed DOI PMC

Filipovic M.G., Aeschbacher S., Reiner M.F., Stivala S., Gobbato S., Bonetti N., Risch M., Risch L., Camici G.G., Luescher T.F., et al. Whole blood omega-3 fatty acid concentrations are inversely associated with blood pressure in young, healthy adults. J. Hypertens. 2018;36:548–1554. doi: 10.1097/HJH.0000000000001728. PubMed DOI PMC

Colussi G.L., Catena C., Dialti V., Mos L., Sechi L.A. The vascular response to vasodilators is related to the membrane content of polyunsaturated fatty acids in hypertensive patients. J. Hypertens. 2015;33:993–1000. doi: 10.1097/HJH.0000000000000495. PubMed DOI

Strand E., Pedersen E.R., Svingen G.F.T., Schartum-Hansen H., Rebnord E.W., Bjørndal B., Seifert R., Bohov P., Meyer K., Hiltunen J.K., et al. Dietary intake of n-3 long-chain polyunsaturated fatty acids and risk of myocardial infarction in coronary artery disease patients with or without diabetes mellitus: A prospective cohort study. BMC Med. 2013;11:216. doi: 10.1186/1741-7015-11-216. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...