An outcome-driven threshold for pulse pressure amplification
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza
PubMed
39039284
PubMed Central
PMC11374666
DOI
10.1038/s41440-024-01779-4
PII: 10.1038/s41440-024-01779-4
Knihovny.cz E-zdroje
- Klíčová slova
- Pulse pressure amplification, Waveform analysis, Cardiovascular risk, Population science,
- MeSH
- analýza pulzové vlny MeSH
- arteria brachialis fyziologie MeSH
- dospělí MeSH
- kardiovaskulární nemoci * patofyziologie MeSH
- krevní tlak * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- rizikové faktory kardiovaskulárních chorob MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Pulse pressure amplification (PPA) is the brachial-to-aortic pulse pressure ratio and decreases with age and cardiovascular risk factors. This individual-participant meta-analysis of population studies aimed to define an outcome-driven threshold for PPA. Incidence rates and standardized multivariable-adjusted hazard ratios (HRs) of cardiovascular and coronary endpoints associated with PPA, as assessed by the SphygmoCor software, were evaluated in the International Database of Central Arterial Properties for Risk Stratification (n = 5608). Model refinement was assessed by the integrated discrimination (IDI) and net reclassification (NRI) improvement. Age ranged from 30 to 96 years (median 53.6). Over 4.1 years (median), 255 and 109 participants experienced a cardiovascular or coronary endpoint. In a randomly defined discovery subset of 3945 individuals, the rounded risk-carrying PPA thresholds converged at 1.3. The HRs for cardiovascular and coronary endpoints contrasting PPA < 1.3 vs ≥1.3 were 1.54 (95% confidence interval [CI]: 1.00-2.36) and 2.45 (CI: 1.20-5.01), respectively. Models were well calibrated, findings were replicated in the remaining 1663 individuals analyzed as test dataset, and NRI was significant for both endpoints. The HRs associating cardiovascular and coronary endpoints per PPA threshold in individuals <60 vs ≥60 years were 3.86 vs 1.19 and 6.21 vs 1.77, respectively. The proportion of high-risk women (PPA < 1.3) was higher at younger age (<60 vs ≥60 years: 67.7% vs 61.5%; P < 0.001). In conclusion, over and beyond common risk factors, a brachial-to-central PP ratio of <1.3 is a forerunner of cardiovascular coronary complications and is an underestimated risk factor in women aged 30-60 years. Our study supports pulse wave analysis for risk stratification.
Biomedical Sciences Group Faculty of Medicine University of Leuven Leuven Belgium
Department of Cardiology Shanghai General Hospital Shanghai China
Department of Medicine University of Padua Padua Italy
Faculty of Medicine Charles University Pilsen Czech Republic
Non Profit Research Association Alliance for the Promotion of Preventive Medicine Mechelen Belgium
Zobrazit více v PubMed
Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, et al. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension. 2009;54:375–83. 10.1161/HYPERTENSIONAHA.109.134379 PubMed DOI
Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, et al. Pulse pressure amplification: a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol. 2010;55:1032–37. 10.1016/j.jacc.2009.09.061 PubMed DOI
Benetos A, Gautier S, Labat C, Salvi P, Valbusa F, Marino F, et al. Mortality and cardiovascular events are best predicted by low central/peripheral pulse pressure amplification but not by high blood pressure levels in elderly nursing home subjects: the PARTAGE (Predictive Values of Blood Pressure and Arterial Stiffness in Institutionalized Very Aged Population) study. J Am Coll Cardiol. 2012;60:1503–11. 10.1016/j.jacc.2012.04.055 PubMed DOI
McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Eur Heart J. 2014;35:1719–25. 10.1093/eurheartj/eht565 PubMed DOI PMC
Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74:1237–63. 10.1016/j.jacc.2019.07.012 PubMed DOI PMC
Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–62. 10.1161/HYPERTENSIONAHA.110.157321 PubMed DOI
McEniery CM, Yasmin Hall IR, Qasem A, Wilkinson IB, Cockcroft JR, on behalf of the ACCT Investigators. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46:1753–60. 10.1016/j.jacc.2005.07.037 PubMed DOI
Wassertheurer S, Burkhardt K, Heemann U, Baumann M. Aortic to brachial pulse pressure amplification as functional marker and predictor of renal function loss in chronic kidney disease. J Clin Hypertens. 2014;16:401–5.10.1111/jch.12316 PubMed DOI PMC
Cho SW, Kim BK, Kim JH, Byun YS, Goh CW, Rhee KJ, et al. Non-invasively measured aortic wave reflection and pulse pressure amplification are related to the severity of coronary artery disease. J Cardiol. 2013;62:131–37. 10.1016/j.jjcc.2013.03.014 PubMed DOI
Aparicio LS, Huang QF, Melgarejo JD, Wei DM, Thijs L, We FF, et al. The International Database of Central Arterial Properties for Risk Stratification: research objectives and baseline characteristics of participants. Am J Hypertens. 2021;35:54–64.10.1093/ajh/hpab139 PubMed DOI PMC
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Ass. 2013;310:2191–94.10.1001/jama.2013.281053 PubMed DOI
Pauca AL, O’Rourke M, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–37. 10.1161/hy1001.096106 PubMed DOI
Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF III, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12. 10.7326/0003-4819-150-9-200905050-00006 PubMed DOI PMC
Schoenfeld DA. Sample-size formula for proportional-hazards regression model. Biometrics. 1983;39:499–503. 10.2307/2531021 PubMed DOI
Gu YM, Thijs L, Li Y, Asayama K, Boggia J, Hansen TW, et al. Outcome-driven thresholds for ambulatory pulse pressure in 9938 participants recruited from 11 populations. Hypertension. 2014;63:229–37. 10.1161/HYPERTENSIONAHA.113.02179 PubMed DOI PMC
Kikuya M, Hansen TW, Thijs L, Björklund-Bodegård K, Kuznetsova T, Ohkubo T, et al. Diagnostic thresholds for ambulatory blood pressure monitoring based on 10-year cardiovascular risk. Circulation. 2007;115:2145–52. 10.1161/CIRCULATIONAHA.106.662254 PubMed DOI
Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72. 10.1002/sim.2929 PubMed DOI
Hosmer DW Jr, Leleshow S. Applied logistic regression. New York, USA: Wiley; 1989. pp. 47–56.
Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11. 10.1161/CIRCULATIONAHA.109.886655 PubMed DOI PMC
McEniery, Yasmin CM, McDonnell B, Munnery M, Wallace SM, Rowe CV, et al. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008;51:1476–82. 10.1161/HYPERTENSIONAHA.107.105445 PubMed DOI
Li Y, Staessen JA, Sheng CS, Huang QF, O’Rourke M, Wang JG. Age dependency of peripheral and central systolic pressures: cross-sectional and longitudinal observations in a Chinese population. Hypertens Res. 2012;35:115–22. 10.1038/hr.2011.160 PubMed DOI
Wojciechowska W, Staessen JA, Nawrot T, Cwynar M, Sleidlerová J, Stolarz K, et al. Reference values in White Europeans for the arterial pulse wave recorded by means of the ShygmoCor device. Hypertens Res. 2006;29:475–83. 10.1291/hypres.29.475 PubMed DOI
Wilkinson IB, Franklin SS, Hall IR, Tyrrell S, Cockcroft JR. Pressure amplification explains why pulse pressure is unrelated to risk in young subjects. Hypertension. 2001;38:1461–66. 10.1161/hy1201.097723 PubMed DOI
O’Rourke MF, Kim M, Adji A, Nichols WW, Avolio A. Use of arterial transfer function for the derivation of aortic wave characrteristics. J Hypertens. 2004;22:431–2. 10.1097/00004872-200402000-00030 PubMed DOI
Segers P, Mahieu D, Kips J, Van Bortel LM. The use of a generalized transfer function: different processing, different results! J Hypertens. 2007;25:1783–87. 10.1097/HJH.0b013e3282ef5c5f PubMed DOI
Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation. 1997;95:1827–36. 10.1161/01.CIR.95.7.1827 PubMed DOI
Sharman JE, Lim R, Qasem AM, Coombes JS, Burgess MI, Franco J, et al. Validation of a generalized transfer function to noninvasively derived central blood pressure during exercise. Hypertension. 2006;47:1203–8. 10.1161/01.HYP.0000223013.60612.72 PubMed DOI
Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. Br Med J. 2010;340:c221. 10.1136/bmj.c221 PubMed DOI
Odili AN, Chori BS, Danladi B, Yang WY, Zhang ZY, Thijs L, et al. Electrocardiographic left ventricular hypertrophy in relation to peripheral and central blood pressure indices in a Nigerian population. Blood Press. 2019;29:39–46. 10.1080/08037051.2019.1646610 PubMed DOI
Staessen J, Amery A, Fagard R. Editorial review. Isolated systolic hypertension in the elderly. J Hypertens. 1990;8:393–405. 10.1097/00004872-199005000-00001 PubMed DOI
Eeftinck Schattenkerk DW, van Gorp J, Vogt L, Peters RJG, van den Born BJH. Isolated systolic hypertension of the young and its association with central blood pressure in a large multi-ethnic population: the HELIUS study. Eur J Prev Cardiol. 2018;25:1351–59. 10.1177/2047487318777430 PubMed DOI PMC
Saladini F, Fania C, Mos L, Mazzer A, Casiglia E, Palatini P. Office pulse pressure is a predictor of favorable outcome in young- to middle-aged subjects with stage 1 hypertension. Hypertension. 2017;70:537–42.10.1161/HYPERTENSIONAHA.117.09516 PubMed DOI
Yao Y, Stamler J, Garside DB, Daviglus ML, Franklin SS, Cernethon MR, et al. Isolated systolic hypertension in young and middle-aged adullts and 31-year risk for cardiovasvular mortality. J Am Coll Cardiol. 2015;65:327–35. 10.1016/j.jacc.2014.10.060 PubMed DOI PMC
McEniery, Yasmin CM, Wallace S, Maki-Petaya K, McDonnell B, Sharman JE, et al. Increased stroke volume and aortic stiffness contribute to isolated systolic hypertension in young adults. Hypertension. 2005;46:221–26. 10.1161/01.HYP.0000165310.84801.e0 PubMed DOI
Palatini P, Rosei EA, Avolio A, Bilo G, Casiglia E, Ghiadoni L, et al. Isolated systolic hypertension in the young: a position paper endorsed by the European Society of Hypertension. J Hypertens. 2018;36:1222–36. 10.1097/HJH.0000000000001726 PubMed DOI
Asayama K, Stolarz-Skrzypek K, Yang WY, Hansen TW, Brguljan-Hitij J, Odili AN, et al. What did we learn from the international databases on ambulatory and home blood pressure in relation to cardiovascular outcome? Hypertens Res. 2023;46:934–49. 10.1038/s41440-023-01191-4 PubMed DOI PMC