Ho3+ codoping of GGAG:Ce: a detailed analysis of acceleration of scintillation response and scintillation efficiency loss

. 2024 Jul 19 ; 14 (32) : 23129-23138. [epub] 20240722

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39040694

In this study, we investigate the effects of Ho3+ codoping on the luminescence and scintillation properties of GGAG:Ce, with a particular focus on timing properties and scintillator efficiency. The research reveals that Ho3+ codoping and subsequent resonant energy transfer from Ce3+ to Ho3+ can significantly reduce the 5d1 excited state decay time of Ce3+ and shorten scintillation pulses of GGAG:Ce registered by using photomultipliers, although this reduces scintillator efficiency as well. The study presents a detailed analysis of the loss of scintillator efficiency due to Ho3+ codoping, identifying the most significant loss pathways and estimating their impact. The findings suggest that Ho3+ codoping is an effective method for accelerating the scintillation response of GGAG:Ce. Furthermore, the study presents a high level of consistency of the Ce3+ kinetics with the Inokuti-Hirayama model and with results obtained in the previous studies on similar systems, demonstrating the predictability of the effect of RE3+ codoping on scintillator properties.

Zobrazit více v PubMed

Páterek J. Pokorný M. Sýkorová S. Stehlík A. Polák J. Houžvička J. et al., Ho3+ codoping of YAG:Ce: Acceleration of Ce3+ decay kinetics by energy transfer. J. Lumin. 2019;213:469–473.

Pokorný M. Páterek J. Nikl M. Sýkorová S. Stehlík A. Polák J. et al., Concentration dependence of energy transfer Ce3+→Er3+ in YAG host. Opt. Mater. 2018;86:338–342.

Páterek J. Král R. Pejchal J. Prokeš R. Nikl M. LuAG:Pr codoped with Ho3+: Acceleration of Pr3+ decay by energy transfer. Radiat. Meas. 2019;124:122–126.

Paterek J., Acceleration of Scintillation Decay in Single Crystal Y3Al5O12:Ce Scintillators by Codoping, Diploma thesis, Czech Technical University, Prague, Czech Republic, 2017

Sykorova S., Páterek J., Pokorný M., Kučerková R., Houžvička J., Nikl M., et al., in Luminescence, Scintillation and Energy Transfer in the Doubly Doped LuAG:Pr,Dy Single Crystal, Chamonix, France, 2017, available from https://indico.cern.ch/event/388511/contributions/2612863/

Robbins D. J. On Predicting the Maximum Efficiency of Phosphor Systems Excited by Ionizing Radiation. J. Electrochem. Soc. 1980;127(12):2694–2702.

Lempicki A. Wojtowicz A. J. Berman E. Fundamental limits of scintillator performance. Nucl. Instrum. Methods Phys. Res., Sect. 1993;333(2–3):304–311.

Rodnyi P. A. Dorenbos P. van Eijk C. W. E. Energy Loss in Inorganic Scintillators. Phys. Status Solidi B. 1995;187(1):15–29.

Han K. Qiao J. Zhang S. Su B. Lou B. Ma C. et al., Band Alignment Engineering in n s 2 Electrons Doped Metal Halide Perovskites. Laser Photonics Rev. 2023;17(1):2200458.

Dieke G. H. Satten R. A. Spectra and Energy Levels of Rare Earth Ions in Crystals. Am. J. Phys. 1970;38(3):399–400.

Carnall W. T., Crosswhite H. and Crosswhite H. M., Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3, Report No.: ANL-78-XX-95, 6417825, 1978, available from: http://www.osti.gov/servlets/purl/6417825/, cited 2018 Oct 1

Kunikata T. Watanabe K. Kantuptim P. Kato T. Nakauchi D. Kawaguchi N. et al., Radioluminescence properties of Sm3+-doped Y3Al5O12 single crystals. Nucl. Instrum. Methods Phys. Res., Sect. B. 2024;546:165172.

Santos J. C. A. Silva E. P. Sampaio D. V. Souza N. R. S. Alves Y. G. S. Silva R. S. Radioluminescence emission of YAG:RE laser-sintered ceramics. Mater. Lett. 2015;160:456–458.

Fujimoto Y. Sugiyama M. Yanagida T. Wakahara S. Suzuki S. Kurosawa S. et al., Comparative study of optical and scintillation properties of Tm3+:YAG, and Tm3+:LuAG single crystals. Opt. Mater. 2013;35(11):2023–2026.

Nikl M. Ogino H. Krasnikov A. Beitlerova A. Yoshikawa A. Fukuda T. Photo- and radioluminescence of Pr-doped Lu3Al5O12 single crystal. Phys. Status Solidi A. 2005;202(1):R4–R6.

Babin V. Nikl M. Kamada K. Beitlerova A. Yoshikawa A. Effect of the Pr 3+ → Gd 3+ energy transfer in multicomponent garnet single crystal scintillators. J. Phys. D: Appl. Phys. 2013;46(36):365303.

Cherepy N. J., Payne S. A., Sturm B. W., O'Neal S. P., Seeley Z. M., Drury O. B., et al., in Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-Loaded Polymer Scintillators, ed. Franks L. A., James R. B. and Burger A., San Diego, California, USA, 2011, p. 81420W, available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.896656, cited 2020 Jan 16

Drury O. B., Cherepy N. J., Hurst T. A. and Payne S. A., Garnet scintillator-based devices for gamma-ray spectroscopy, in 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), IEEE, Orlando, FL, 2009, pp. , pp. 1585–1587, available from: http://ieeexplore.ieee.org/document/5402267/, cited 2024 Jul 6

Kochurikhin V. Kamada K. Jin Kim K. Ivanov M. Gushchina L. Shoji Y. et al., Czochralski growth of 4-inch diameter Ce:Gd3Al2Ga3O12 single crystals for scintillator applications. J. Cryst. Growth. 2020;531:125384.

Aad G. Abajyan T. Abbott B. Abdallah J. Abdel K. S. Abdelalim A. A. et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 2012;716(1):1–29.

Sickafus K. E. Melcher C. L. Flynn-Hepford M. I. Wang Y. Jaroslaw G. Smith J. P. et al., Crystal chemistry of rare-earth containing garnets: Prospects for high configurational entropy. J. Solid State Chem. 2022;310:122997.

Bárta J. Pestovich K. S. Valdez J. A. Wiggins B. W. Richards C. Smith E. et al., Compositional screening of Ce-doped (Gd,Lu,Y)3(Al,Ga)5O12 ceramics prepared by quenching from melt and their luminescence properties. J. Alloys Compd. 2021;889:161687.

Pianassola M. Alexander M. Chakoumakos B. Koschan M. Melcher C. Zhuravleva M. Effects of composition and growth parameters on phase formation in multicomponent aluminum garnet crystals. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2022;78(3):476–484. PubMed

Ogiegło J. M. Katelnikovas A. Zych A. Jüstel T. Meijerink A. Ronda C. R. Luminescence and Luminescence Quenching in Gd 3 (Ga,Al) 5 O 12 Scintillators Doped with Ce 3+ J. Phys. Chem. A. 2013;117(12):2479–2484. PubMed

Nargelas S. Talochka Y. Vaitkevičius A. Dosovitskiy G. Buzanov O. Vasil’ev A. et al., Influence of matrix composition and its fluctuations on excitation relaxation and emission spectrum of Ce ions in (Gd Y1-)3Al2Ga3O12:Ce scintillators. J. Lumin. 2022;242:118590.

Drozdowski W. Brylew K. Witkowski M. E. Wojtowicz A. J. Solarz P. Kamada K. et al., Studies of light yield as a function of temperature and low temperature thermoluminescence of Gd3Al2Ga3O12:Ce scintillator crystals. Opt. Mater. 2014;36(10):1665–1669.

Wu Y. Meng F. Li Q. Koschan M. Melcher C. L. Role of Ce 4 + in the Scintillation Mechanism of Codoped Gd 3 Ga 3 Al 2 O 12 : Ce. Phys. Rev. Appl. 2014;2(4):044009.

Dantelle G. Boulon G. Guyot Y. Testemale D. Guzik M. Kurosawa S. et al., Research on Efficient Fast Scintillators: Evidence and X-Ray Absorption Near Edge Spectroscopy Characterization of Ce 4+ in Ce 3+ , Mg 2+ -Co-Doped Gd 3 Al 2 Ga 3 O 12 Garnet Crystal. Phys. Status Solidi B. 2020;257(8):1900510.

Bartosiewicz K. Markovskyi A. Horiai T. Szymański D. Kurosawa S. Yamaji A. et al., A study of Mg2+ ions effect on atoms segregation, defects formation, luminescence and scintillation properties in Ce3+ doped Gd3Al2Ga3O12 single crystals. J. Alloys Compd. 2022;905:164154.

Lalinsky O. Schauer P. Kucera M. Influence of Mg-to-Ce Concentration Ratio on Cathodoluminescence in LuAG and LuGAGG Single-Crystalline Films. Phys. Status Solidi A. 2019;216(18):1801016.

Zhang A. Li C. Xue Z. Zhao S. Qiu P. Zhang Z. et al., Investigation of the Mechanism of Heterovalent Codoping on the Scintillation Properties of GAGG:Ce Crystals. Cryst. Growth Des. 2024;24(7):3002–3009.

Spassky D. Fedyunin F. Rubtsova E. Tarabrina N. Morozov V. Dzhevakov P. et al., Structural, optical and luminescent properties of undoped Gd3AlxGa5-xO12 (x = 0,1,2,3) and Gd2YAl2Ga3O12 single crystals. Opt. Mater. 2022;125:112079.

Dorenbos P. Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE=Gd, Y, Lu) garnet compounds. J. Lumin. 2013;134:310–318.

Xia Z. Meijerink A. Ce 3+ -Doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 2017;46(1):275–299. PubMed

Kobayashi T. Yamamoto S. Okumura S. Yeom J. Y. Kamada K. Yoshikawa A. Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems. Nucl. Instrum. Methods Phys. Res., Sect. 2017;842:14–19.

Martinazzoli L. Kratochwil N. Gundacker S. Auffray E. Scintillation properties and timing performance of state-of-the-art Gd 3 Al 2 Ga 3 O12 single crystals. Nucl. Instrum. Methods Phys. Res., Sect. 2021;1000:165231.

O'Connor D. V. and Phillips D., Time-correlated Single Photon Counting, Academic Press, London, Orlando, 1984, p. 288

Mares J. A. Nikl M. Solovieva N. D'Ambrosio C. de Notaristefani F. Blazek K. et al., Scintillation and spectroscopic properties of Ce3+-doped YAlO3 and Lux(RE)1−xAlO3(RE=Y3+ and Gd3+) scintillators. Nucl. Instrum. Methods Phys. Res., Sect. 2003;498(1–3):312–327.

Mares J. A. Beitlerova A. Nikl M. Solovieva N. D'Ambrosio C. Blazek K. et al., Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1MeV. Radiat. Meas. 2004;38(4–6):353–357.

Petschke D., dpscience/DLTReconvolution: DLTReconvolution v1.2, Zenodo, 2019, available from: https://zenodo.org/record/3464523, cited 2023 May 3

Newville M., Stensitzki T., Allen D. B. and Ingargiola A., LMFIT: Non-linear Least-Square Minimization and Curve-Fitting for Python, Zenodo, 2014, available from: https://zenodo.org/record/11813, cited 2023 May 3

Virtanen P. Gommers R. Oliphant T. E. Haberland M. Reddy T. Cournapeau D. et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17(3):261–272. PubMed PMC

Czochralski J. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z. Phys. Chem. 1918;92U(1):219–221.

Luther R. Nikolopulos A. Über die Beziehungen zwischen den Absorptionsspektren und der Konstitution der komplexen Kobaltamminsalze. Z. Phys. Chem. 1913;82U(1):361–384.

Nikl M. Kamada K. Babin V. Pejchal J. Pilarova K. Mihokova E. et al., Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators. Cryst. Growth Des. 2014;14(9):4827–4833.

Kamada K. Endo T. Tsutumi K. Yanagida T. Fujimoto Y. Fukabori A. et al., Composition Engineering in Cerium-Doped (Lu,Gd) 3 (Ga,Al) 5 O 12 Single-Crystal Scintillators. Cryst. Growth Des. 2011;11(10):4484–4490.

Malinowski M. Frukacz Z. Szuflińska M. Wnuk A. Kaczkan M. Optical transitions of Ho3+ in YAG. J. Alloys Compd. 2000;300–301:389–394.

Jain A. Ong S. P. Hautier G. Chen W. Richards W. D. Dacek S. et al., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):011002.

Mateika D. Völkel E. Haisma J. Lattice-constant-adaptable crystallographics. J. Cryst. Growth. 1990;102(4):994–1013.

Martinazzoli L. Nargelas S. Boháček P. Calá R. Dušek M. Rohlíček J. et al., Compositional engineering of multicomponent garnet scintillators: towards an ultra-accelerated scintillation response. Mater. Adv. 2022;3(17):6842–6852.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...