Endocrine disruption of adipose physiology: Screening in SGBS cells
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
825712
European Union's Horizon 2020 Research and Innovation programme
857560
European Union's Horizon 2020 Research and Innovation programme
LM2023069
RECETOX Research Infrastructure
PubMed
39044430
DOI
10.1002/jat.4679
Knihovny.cz E-zdroje
- Klíčová slova
- SGBS cells, Simpson Golabi Behmel Syndrome cell line, adipocyte, adipogenesis, endocrine disruptors,
- MeSH
- adipogeneze * účinky léků MeSH
- buněčné linie MeSH
- endokrinní disruptory * toxicita MeSH
- fluorokarbony toxicita MeSH
- kapryláty toxicita MeSH
- lidé MeSH
- metabolismus lipidů účinky léků MeSH
- proteiny vázající mastné kyseliny * metabolismus genetika MeSH
- trialkylcínové sloučeniny toxicita MeSH
- tuková tkáň účinky léků metabolismus MeSH
- tukové buňky účinky léků metabolismus MeSH
- viabilita buněk * účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endokrinní disruptory * MeSH
- FABP4 protein, human MeSH Prohlížeč
- fluorokarbony MeSH
- kapryláty MeSH
- perfluorooctanoic acid MeSH Prohlížeč
- proteiny vázající mastné kyseliny * MeSH
- trialkylcínové sloučeniny MeSH
- tributyltin MeSH Prohlížeč
The increasing use of industrial chemicals has raised concerns regarding exposure to endocrine-disrupting chemicals (EDCs), which interfere with developmental, reproductive and metabolic processes. Of particular concern is their interaction with adipose tissue, a vital component of the endocrine system regulating metabolic and hormonal functions. The SGBS (Simpson Golabi Behmel Syndrome) cell line, a well-established human-relevant model for adipocyte research, closely mimics native adipocytes' properties. It responds to hormonal stimuli, undergoes adipogenesis and has been successfully used to study the impact of EDCs on adipose biology. In this study, we screened human exposure-relevant doses of various EDCs on the SGBS cell line to investigate their effects on viability, lipid accumulation and adipogenesis-related protein expression. Submicromolar doses were generally well tolerated; however, at higher doses, EDCs compromised cell viability, with cadmium chloride (CdCl2) showing the most pronounced effects. Intracellular lipid levels remained unaffected by EDCs, except for tributyltin (TBT), used as a positive control, which induced a significant increase. Analysis of adipogenesis-related protein expression revealed several effects, including downregulation of fatty acid-binding protein 4 (FABP4) by dibutyl phthalate, upregulation by CdCl2 and downregulation of perilipin 1 and FABP4 by perfluorooctanoic acid. Additionally, TBT induced dose-dependent upregulation of C/EBPα, perilipin 1 and FABP4 protein expression. These findings underscore the importance of employing appropriate models to study EDC-adipocyte interactions. Conclusions from this research could guide strategies to reduce the negative impacts of EDC exposure on adipose tissue.
Department of Internal Medicine and Cardiology University Hospital Brno Brno Czech Republic
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Attia, S. M., Das, S. C., Varadharajan, K., & Al‐Naemi, H. A. (2022). White adipose tissue as a target for cadmium toxicity. Frontiers in Pharmacology, 13(October), 1–9. https://doi.org/10.3389/fphar.2022.1010817
Baker, A. H., Watt, J., Huang, C. K., Gerstenfeld, L. C., & Schlezinger, J. J. (2015). Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells. Chemical Research in Toxicology, 28(6), 1156–1166. https://doi.org/10.1021/tx500433r
Biemann, R., Navarrete Santos, A., Navarrete Santos, A., Riemann, D., Knelangen, J., Blüher, M., Koch, H., & Fischer, B. (2012). Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows. Biochemical and Biophysical Research Communications, 417(2), 747–752. https://doi.org/10.1016/j.bbrc.2011.12.028
Binó, L., Procházková, J., Radaszkiewicz, K. A., Kucera, J., Kudová, J., Pacherník, J., & Kuala, L. (2017). Hypoxia favors myosin heavy chain beta gene expression in an Hif‐1alpha‐dependent manner. Oncotarget, 8(48), 83684–83697. https://doi.org/10.18632/oncotarget.19016
de Cock, M., & van de Bor, M. (2014). Obesogenic effects of endocrine disruptors, what do we know from animal and human studies? Environment International, 70, 15–24. https://doi.org/10.1016/j.envint.2014.04.022
de Coster, S., & van Larebeke, N. (2012). Endocrine‐disrupting chemicals: Associated disorders and mechanisms of action. Journal of Environmental and Public Health, 2012, 1–52. https://doi.org/10.1155/2012/713696
de Filippis, E., Li, T., & Rosen, E. D. (2018). Exposure of adipocytes to bisphenol‐A in vitro interferes with insulin action without enhancing adipogenesis. PLoS ONE, 13(8), 1–14. https://doi.org/10.1371/journal.pone.0201122
Desgrouas, C., Thalheim, T., Cerino, M., Badens, C., & Bonello‐Palot, N. (2024). Perilipin 1: A systematic review on its functions on lipid metabolism and atherosclerosis in mice and humans. Cardiovascular Research, 120(3), 237–248. https://doi.org/10.1093/cvr/cvae005
Encarnação, T., Pais, A. A. C. C., Campos, M. G., & Burrows, H. D. (2019). Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. Science Progress, 102(1), 3–42. https://doi.org/10.1177/0036850419826802
Ernst, J., Grabiec, U., Falk, K., Dehghani, F., & Schaedlich, K. (2020). The endocrine disruptor DEHP and the ECS: Analysis of a possible crosstalk. Endocrine Connections, 9(2), 101–110. https://doi.org/10.1530/EC-19-0548
Fischer‐Posovszky, P., Newell, F. S., Wabitsch, M., & Tornqvist, H. E. (2008). Human SGBS cells—A unique tool for studies of human fat cell biology. Obesity Facts, 1(4), 184–189. https://doi.org/10.1159/000145784
Furuhashi, M., Saitoh, S., Shimamoto, K., & Miura, T. (2014). Fatty acid‐binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clinical Medicine Insights: Cardiology, 8(Suppl 3), 23–33. https://doi.org/10.4137/CMC.S17067
Gasser, M., Lenglet, S., Bararpour, N., Sajic, T., Wiskott, K., Augsburger, M., Fracasso, T., Gilardi, F., & Thomas, A. (2022). Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology, 470(October 2021), 153153. https://doi.org/10.1016/j.tox.2022.153153
Grün, F., Watanabe, H., Zamanian, Z., Maeda, L., Arima, K., Cubacha, R., Gardiner, D. M., Kanno, J., Iguchi, T., & Blumberg, B. (2006). Endocrine‐disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Molecular Endocrinology, 20(9), 2141–2155. https://doi.org/10.1210/me.2005-0367
Heindel, J. J., Blumberg, B., Cave, M., Machtinger, R., Mantovani, A., Mendez, M. A., Nadal, A., Palanza, P., Panzica, G., Sargis, R., Vandenberg, L. N., & vom Saal, F. (2017). Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology, 68, 3–33. https://doi.org/10.1016/j.reprotox.2016.10.001
Heindel, J. J., Newbold, R., & Schug, T. T. (2015). Endocrine disruptors and obesity. Nature Reviews. Endocrinology, 11(11), 653–661. https://doi.org/10.1038/nrendo.2015.163
Inoue, K., Kawaguchi, M., Yamanaka, R., Higuchi, T., Ito, R., Saito, K., & Nakazawa, H. (2005). Evaluation and analysis of exposure levels of di(2‐ethylhexyl) phthalate from blood bags. Clinica Chimica Acta, 358(1–2), 159–166. https://doi.org/10.1016/j.cccn.2005.02.019
Janesick, A. S., & Blumberg, B. (2016). Obesogens: An emerging threat to public health. American Journal of Obstetrics and Gynecology, 214(5), 559–565. https://doi.org/10.1016/j.ajog.2016.01.182
Li, H., Li, J., Qu, Z., Qian, H., Zhang, J., Wang, H., Xu, X., & Liu, S. (2020). Intrauterine exposure to low‐dose DBP in the mice induces obesity in offspring via suppression of UCP1 mediated ER stress. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-73477-3
Li, X., Ycaza, J., & Blumberg, B. (2011). The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3‐L1 preadipocytes. Journal of Steroid Biochemistry and Molecular Biology, 127(1–2), 9–15. https://doi.org/10.1016/j.jsbmb.2011.03.012
Lutfi, E., Riera‐Heredia, N., Córdoba, M., Porte, C., Gutiérrez, J., Capilla, E., & Navarro, I. (2017). Tributyltin and triphenyltin exposure promotes in vitro adipogenic differentiation but alters the adipocyte phenotype in rainbow trout. Aquatic Toxicology, 188(May), 148–158. https://doi.org/10.1016/j.aquatox.2017.05.001
Modaresi, S. M. S., Wei, W., Emily, M., DaSilva, N. A., & Slitt, A. L. (2022). Per‐ and polyfluoroalkyl substances (PFAS) augment adipogenesis and shift the proteome in murine 3T3‐L1 adipocytes. Toxicology, 465(October 2021), 153044. https://doi.org/10.1016/j.tox.2021.153044
Oliviero, F., Marmugi, A., Viguié, C., Gayrard, V., Picard‐Hagen, N., & Mselli‐Lakhal, L. (2022). Are BPA substitutes as obesogenic as BPA? International Journal of Molecular Sciences, 23(8), 4238. https://doi.org/10.3390/ijms23084238
Ouadah‐Boussouf, N., & Babin, P. J. (2016). Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin. Toxicology and Applied Pharmacology, 294, 32–42. https://doi.org/10.1016/j.taap.2016.01.014
Ramskov Tetzlaff, C. N., Svingen, T., Vinggaard, A. M., Rosenmai, A. K., & Taxvig, C. (2020). Bisphenols B, E, F, and S and 4‐cumylphenol induce lipid accumulation in mouse adipocytes similarly to bisphenol A. Environmental Toxicology, 35, 543–552. https://doi.org/10.1002/tox.22889
Reckziegel, P., Petrovic, N., Cannon, B., & Nedergaard, J. (2024). Perfluorooctanoate (PFOA) cell‐autonomously promotes thermogenic and adipogenic differentiation of brown and white adipocytes. Ecotoxicology and Environmental Safety, 271(September 2023), 115955. https://doi.org/10.1016/j.ecoenv.2024.115955
Rosen, E. D., Hsu, C., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J., & Spiegelman, B. M. (2002). C/EBPα induces adipogenesis through PPARγ: A unified pathway. Genes & Development, 16(1), 22–26. https://doi.org/10.1101/gad.948702
Schaedlich, K., Gebauer, S., Hunger, L., Beier, L. S., Koch, H. M., Wabitsch, M., Fischer, B., & Ernst, J. (2018). DEHP deregulates adipokine levels and impairs fatty acid storage in human SGBS‐adipocytes. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-21800-4
Schaffert, A., Karkossa, I., Ueberham, E., Schlichting, R., Walter, K., Arnold, J., Blüher, M., Heiker, J. T., Lehmann, J., Wabitsch, M., Escher, B. I., von Bergen, M., & Schubert, K. (2022). Di‐(2‐ethylhexyl) phthalate substitutes accelerate human adipogenesis through PPARγ activation and cause oxidative stress and impaired metabolic homeostasis in mature adipocytes. Environment International, 164(April), 107279. https://doi.org/10.1016/j.envint.2022.107279
Schaffert, A., Krieg, L., Weiner, J., Schlichting, R., Ueberham, E., Karkossa, I., Bauer, M., Landgraf, K., Junge, K. M., Wabitsch, M., Lehmann, J., Escher, B. I., Zenclussen, A. C., Körner, A., Blüher, M., Heiker, J. T., von Bergen, M., & Schubert, K. (2021). Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environment International, 156, 106730. https://doi.org/10.1016/j.envint.2021.106730
Singh, M., Crosthwait, J., Sorisky, A., & Atlas, E. (2024). Tetra methyl bisphenol F: Another potential obesogen. International Journal of Obesity, 48, 923–933. https://doi.org/10.1038/s41366-024-01496-5
Tews, D., Brenner, R. E., Siebert, R., Debatin, K. M., Fischer‐Posovszky, P., & Wabitsch, M. (2022). 20 years with SGBS cells—A versatile in vitro model of human adipocyte biology. International Journal of Obesity, 46(11), 1939–1947. https://doi.org/10.1038/s41366-022-01199-9
Valentino, R., D'Esposito, V., Passaretti, F., Liotti, A., Cabaro, S., Longo, M., Perruolo, G., Oriente, F., Beguinot, F., & Formisano, P. (2013). Bisphenol‐A impairs insulin action and up‐regulates inflammatory pathways in human subcutaneous adipocytes and 3T3‐L1 cells. PLoS ONE, 8(12), 1–10. https://doi.org/10.1371/journal.pone.0082099
van den Dungen, M. W., Murk, A. J., Kok, D. E., & Steegenga, W. T. (2017). Persistent organic pollutants alter DNA methylation during human adipocyte differentiation. Toxicology in Vitro, 40, 79–87. https://doi.org/10.1016/j.tiv.2016.12.011
Večeřa, J., Kudová, J., Kučera, J., Kubala, L., & Pacherník, J. (2017). Neural differentiation is inhibited through HIF1 α/β‐catenin signaling in embryoid bodies. Stem Cells International, 2017, 1–12. https://doi.org/10.1155/2017/8715798
Wabitsch, M., Brenner, R. E., Melzner, I., Braun, M., Möller, P., Heinze, E., Debatin, K. M., & Hauner, H. (2001). Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. International Journal of Obesity, 25(1), 8–15. https://doi.org/10.1038/sj.ijo.0801520
Wada, K., Sakamoto, H., Nishikawa, K., Sakuma, S., Nakajima, A., Fujimoto, Y., & Kamisaki, Y. (2007). Life style‐related diseases of the digestive system: Endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome. Journal of Pharmacological Sciences, 105(2), 133–137. https://doi.org/10.1254/jphs.FM0070034
Xu, J., Shimpi, P., Armstrong, L., Salter, D., & Slitt, A. L. (2016). PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway. Toxicology and Applied Pharmacology, 290(1), 21–30. https://doi.org/10.1016/j.taap.2015.11.002