Ultrasensitive Raman Detection of Biomolecular Conformation at the Attomole Scale using Chiral Nanophotonics
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
James Watt Nanofabrication Centre
RF-2019-023
Leverhulme Trust
23-08509S
Grantová Agentura České Republiky
EP/S029168/1
Engineering and Physical Sciences Research Council
EP/S012745/1
Engineering and Physical Sciences Research Council
EP/S001514/1
EPSRC Centre for Doctoral Training in Medical Imaging
PubMed
39045909
DOI
10.1002/smll.202404536
Knihovny.cz E-zdroje
- Klíčová slova
- Plasmonics, SERS, chirality, enantiomer, super chirality optical chirality,
- MeSH
- kovové nanočástice chemie MeSH
- molekulární konformace MeSH
- nanotechnologie metody MeSH
- peptidy chemie MeSH
- Ramanova spektroskopie * metody MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidy MeSH
- zlato MeSH
Understanding the function of a biomolecule hinges on its 3D conformation or secondary structure. Chirally sensitive, optically active techniques based on the differential absorption of UV-vis circularly polarized light excel at rapid characterisation of secondary structures. However, Raman spectroscopy, a powerful method for determining the structure of simple molecules, has limited capacity for structural analysis of biomolecules because of intrinsically weak optical activity, necessitating millimolar (mM) sample quantities. A breakthrough is presented for utilising Raman spectroscopy in ultrasensitive biomolecular conformation detection, surpassing conventional Raman optical activity by 15 orders of magnitude. This strategy combines chiral plasmonic metasurfaces with achiral molecular Raman reporters and enables the detection of different conformations (α-helix and random coil) of a model peptide (poly-L/D-lysine) at the ≤attomole level (monolayer). This exceptional sensitivity stems from the ability to detect local, molecular-scale changes in the electromagnetic (EM) environment of a chiral nanocavity induced by the presence of biomolecules using molecular Raman reporters. Further signal enhancement is achieved by incorporating achiral Au nanoparticles. The introduction of the nanoparticles creates highly localized regions of extreme optical chirality. This approach, which exploits Raman, a generic phenomenon, paves the way for next-generation technologies for the ultrasensitive detection of diverse biomolecular structures.
James Watt School of Engineering Rankine Building University of Glasgow Glasgow G12 8QQ UK
School of Chemistry Joseph Black Building University of Glasgow Glasgow G12 8QQ UK
Zobrazit více v PubMed
Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, A. Alu, Nat. Commun. 2017, 8, 14180.
M. L. Solomon, J. M. Abendroth, L. V. Poulikakos, J. Hu, J. A. Dionne, J. Am. Chem. Soc. 2020, 142, 18304.
E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, Nat. Nanotechnol. 2010, 5, 783.
T.‐H. Xiao, Z. Cheng, Z. Luo, A. Isozaki, K. Hiramatsu, T. Itoh, M. Nomura, S. Iwamoto, K. Goda, Nat. Commun. 2021, 12, 3062.
T. R. Leite, L. Zschiedrich, O. Kizilkaya, K. M. McPeak, Nano Lett. 2022, 22, 7343.
E. W. Blanch, L. D. R. Barron, in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Eds: P. Matousek, M. D. Morris), Biological and Medical Physics Biomedical Engineering, Springer, xx xx, 2010, pp. 153, https://link.springer.com/book/10.1007/978‐3‐642‐02649‐2.
L. D. Barron, Biomed. Spectrosc. Imaging 2015, 4, 223.
O. Guselnikova, R. Elashnikov, V. Svorcik, M. Kartau, C. Gilroy, N. Gadegaard, M. Kadodwala, A. S. S. Karimullah, O. Lyutakov, Nanoscale Horiz. 2023, 8, 499.
A. S. Karimullah, C. Jack, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, M. Kadodwala, Adv. Mater. 2015, 27, 5610.
C. Kelly, L. Khosravi Khorashad, N. Gadegaard, L. D. Barron, A. O. Govorov, A. S. Karimullah, M. Kadodwala, ACS Photonics 2018, 5, 535.
M. Rodier, C. Keijzer, J. Milner, A. S. Karimullah, A. W. Roszak, L. D. Barron, N. Gadegaard, A. J. Lapthorn, M. Kadodwala, Nanoscale Horiz. 2020, 5, 336.
R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, M. Kadodwala, J. Am. Chem. Soc. 2015, 137, 8380.
R. Tullius, G. W. Platt, L. Khosravi Khorashad, N. Gadegaard, A. J. Lapthorn, V. M. Rotello, G. Cooke, L. D. Barron, A. O. Govorov, A. S. Karimullah, M. Kadodwala, ACS Nano 2017, 11, 12049.
C. Kelly, R. Tullius, A. J. Lapthorn, N. Gadegaard, G. Cooke, L. D. Barron, A. S. Karimullah, V. M. Rotello, M. Kadodwala, J. Am. Chem. Soc. 2018, 140, 8509.
M. Rodier, C. Keijzer, J. Milner, A. S. Karimullah, L. D. Barron, N. Gadegaard, A. J. Lapthorn, M. Kadodwala, J. Phys. Chem. Lett. 2019, 10, 6105.
T. Kakkar, C. Keijzer, M. Rodier, T. Bukharova, M. Taliansky, A. J. Love, J. J. Milner, A. S. Karimullah, L. D. Barron, N. Gadegaard, A. J. Lapthorn, M. Kadodwala, Light: Sci. Appl. 2020, 9, 195.
M. Hajji, M. Cariello, C. Gilroy, M. Kartau, C. D. Syme, A. Karimullah, N. Gadegaard, A. Malfait, P. Woisel, G. Cooke, W. J. Peveler, M. Kadodwala, ACS Nano 2021, 15, 19905.
V. Tabouillot, R. Kumar, P. L. Lalaguna, M. Hajji, R. Clarke, A. S. Karimullah, A. R. Thomson, A. Sutherland, N. Gadegaard, S. Hashiyada, M. Kadodwala, ACS Photonics 2022, 9, 3617.
D. P. Santos, M. L. A. Temperini, A. G. Brolo, Acc. Chem. Res. 2019, 52, 456.
E.‐O. Ganbold, S.‐W. Joo, Bull. Korean Chem. Soc. 2015, 36, 887.
M. Kartau, A. Skvortsova, V. Tabouillot, S. K. Chaubey, P. Bainova, R. Kumar, V. Burtsev, V. Svorcik, N. Gadegaard, S. W. Im, M. Urbanova, O. Lyutakov, M. Kadodwala, A. S. Karimullah, Adv. Opt. Mater. 2023, 11, 2202991.
G. Dodero, L. De Michieli, O. Cavalleri, R. Rolandi, L. Oliveri, A. Daccà, R. Parodi, Colloids Surf. A 2000, 175, 121.
S. Fischer, A. C. Papageorgiou, M. Marschall, J. Reichert, K. Diller, F. Klappenberger, F. Allegretti, A. Nefedov, C. Wöll, J. V. Barth, A. Cysteine on, J. Phys. Chem. C 2012, 116, 20356.
D. A. MacLaren, J. Johnston, D. A. Duncan, H. Marchetto, S. S. Dhesi, N. Gadegaard, M. Kadodwala, Phys. Chem. Chem. Phys. 2009, 11, 8413.
N. Bovet, N. McMillan, N. Gadegaard, M. Kadodwala, J. Phys. Chem. B 2007, 111, 10005.
Y. R. Lee, M. S. Kim, C. H. Kwon, Bull. Korean Chem. Soc. 2013, 34, 470.
N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, M. Kadodwala, Nano Lett. 2012, 12, 977.
C. Kelly, L. K. Khorashad, N. Gadegaard, L. D. Barron, A. O. Govorov, A. S. Karimullah, M. Kadodwala, ACS Photonics 2018, 5, 535.
C. Gilroy, D. J. P. Koyroytsaltis‐McQuire, N. Gadegaard, A. S. Karimullah, M. Kadodwala, Mater. Adv. 2022, 3, 346.
D. J. P. Koyroytsaltis‐McQuire, C. Gilroy, L. D. Barron, N. Gadegaard, A. S. Karimullah, M. Kadodwala, Adv. Photonics Res. 2022, 3, 2100155.
Y. Tang, A. E. Cohen, Phys. Rev. Lett. 2010, 104, 163901.
D. M. Lipkin, J. Mathemat. Phys. 1964, 5, 696.
Y. Tang, A. E. Cohen, Science 2011, 332, 333.