Telomere length as a predictor of therapy response and survival in patients diagnosed with ovarian carcinoma
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39050459
PubMed Central
PMC11268197
DOI
10.1016/j.heliyon.2024.e33525
PII: S2405-8440(24)09556-2
Knihovny.cz E-resources
- Keywords
- Ovarian cancer, Shelterin, Telomerase, Telomere length, Therapy response,
- Publication type
- Journal Article MeSH
Impaired telomere length (TL) maintenance in ovarian tissue may play a pivotal role in the onset of epithelial ovarian cancer (OvC). TL in either target or surrogate tissue (blood) is currently being investigated for use as a predictor in anti-OvC therapy or as a biomarker of the disease progression, respectively. There is currently an urgent need for an appropriate approach to chemotherapy response prediction. We performed a monochrome multiplex qPCR measurement of TL in peripheral blood leukocytes (PBL) and tumor tissues of 209 OvC patients. The methylation status and gene expression of the shelterin complex and telomerase catalytic subunit (hTERT) were determined within tumor tissues by High-Throughput DNA methylation profiling and RNA sequencing (RNA-Seq) analysis, respectively. The patients sensitive to cancer treatment (n = 46) had shorter telomeres in PBL compared to treatment-resistant patients (n = 93; P = 0.037). In the patients with a different therapy response, transcriptomic analysis showed alterations in the peroxisome proliferator-activated receptor (PPAR) signaling pathway (q = 0.001). Moreover, tumor TL shorter than the median corresponded to better overall survival (OS) (P = 0.006). TPP1 gene expression was positively associated with TL in tumor tissue (P = 0.026). TL measured in PBL could serve as a marker of platinum therapy response in OvC patients. Additionally, TL determined in tumor tissue provides information on OvC patients' OS.
3rd Faculty of Medicine Charles University Ruska 87 100 00 Prague Czech Republic
Toxicogenomics Unit National Institute of Public Health Srobarova 48 100 42 Prague Czech Republic
See more in PubMed
Srinivas N., Rachakonda S., Kumar R. Telomeres and telomere length: a general overview. Cancers. 2020;12:558. doi: 10.3390/cancers12030558. PubMed DOI PMC
Tomasova K., Kroupa M., Forsti A., Vodicka P., Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis. 2020:35261–35271. doi: 10.1093/mutage/geaa005. PubMed DOI
de Lange T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 2018;52:223–247. doi: 10.1146/annurev-genet-032918-021921. PubMed DOI
Hu C., Rai R., Huang C., et al. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell Res. 2017;27:1485–1502. doi: 10.1038/cr.2017.144. PubMed DOI PMC
Kibe T., Zimmermann M., de Lange T. TPP1 blocks an ATR-mediated resection mechanism at telomeres. Mol. Cell. 2016;61:236–246. doi: 10.1016/j.molcel.2015.12.016. PubMed DOI PMC
Maciejowski J., de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat. Rev. Mol. Cell Biol. 2017;18:175–186. doi: 10.1038/nrm.2016.171. PubMed DOI PMC
Cesare A.J., Reddel R.R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 2010;11:319–330. doi: 10.1038/nrg2763. PubMed DOI
Hahn W.C., Meyerson M. Telomerase activation, cellular immortalization and cancer. Ann. Med. 2001;33:123–129. doi: 10.3109/07853890109002067. PubMed DOI
Harley C.B. Telomerase and cancer therapeutics. Nat. Rev. Cancer. 2008;8:167–179. doi: 10.1038/nrc2275. PubMed DOI
Huda N., Xu Y., Bates A.M., et al. Onset of telomere dysfunction and fusions in human ovarian carcinoma. Cells. 2019;8:414. doi: 10.3390/cells8050414. PubMed DOI PMC
Bojesen S.E., Pooley K.A., Johnatty S.E., et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 2013;45:371–384. doi: 10.1038/ng.2566. PubMed DOI PMC
Huang H.-N., Chiang Y.-C., Cheng W.-F., et al. Molecular alterations in endometrial and ovarian clear cell carcinomas: clinical impacts of telomerase reverse transcriptase promoter mutation. Mod. Pathol. 2015;28:303–311. doi: 10.1038/modpathol.2014.93. PubMed DOI
Wu R.-C., Ayhan A., Maeda D., et al. Frequent somatic mutations of the telomerase reverse transcriptase promoter in ovarian clear cell carcinoma but not in other major types of gynaecological malignancy. J. Pathol. 2014;232:473–481. doi: 10.1002/path.4315. PubMed DOI PMC
Pilsworth J.A., Cochrane D.R., Xia Z., et al. TERT promoter mutation in adult granulosa cell tumor of the ovary. Mod. Pathol. 2018;31:1107–1115. doi: 10.1038/s41379-018-0007-9. PubMed DOI
Zhou H., Mondal A., Dakic A., et al. Time-dependent effects of POT1 knockdown on proliferation, tumorigenicity, and HDACi response of SK-OV3 ovarian cancer cells. BioMed Res. Int. 2018;2018 doi: 10.1155/2018/7184253. PubMed DOI PMC
Greenberg R.A., O'Hagan R.C., Deng H., et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene. 1999;18:1219–1226. doi: 10.1038/sj.onc.1202669. PubMed DOI
Karami S., Han Y., Pande M., et al. Telomere structure and maintenance gene variants and risk of five cancer types. Int. J. Cancer. 2016;139:2655–2670. doi: 10.1002/ijc.30288. PubMed DOI PMC
Friedlander M., Trimble E., Tinker A., et al. Clinical trials in recurrent ovarian cancer. Int. J. Gynecol. Cancer. 2011;21:771–775. doi: 10.1097/IGC.0b013e31821bb8aa. PubMed DOI
Kroupa M., Rachakonda S.K., Liska V., et al. Relationship of telomere length in colorectal cancer patients with cancer phenotype and patient prognosis. Br. J. Cancer. 2019;121:344–350. doi: 10.1038/s41416-019-0525-3. PubMed DOI PMC
Kroupa M., Rachakonda S., Vymetalkova V., et al. Telomere length in peripheral blood lymphocytes related to genetic variation in telomerase, prognosis and clinicopathological features in breast cancer patients. Mutagenesis. 2020;35:491–497. doi: 10.1093/mutage/geaa030. PubMed DOI
Guenin S., Mauriat M., Pelloux J., et al. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 2009;60:487–493. doi: 10.1093/jxb/ern305. PubMed DOI
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc Seen 9. 6. 2024. Available online at:
Ewels P., Magnusson M., Lundin S., et al. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma Oxf Engl. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC
Chen S., Zhou Y., Chen Y., et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Bray N.L., Pimentel H., Melsted P., et al. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt0816-888d. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Stephens M. False discovery rates: a new deal. Biostatistics. 2016;18:275–294. doi: 10.1093/biostatistics/kxw041. PubMed DOI PMC
Wu T., Hu E., Xu S., et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2 doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Yu G., Wang L.-G., Yan G.-R., et al. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 2015;31:608–609. doi: 10.1093/bioinformatics/btu684. PubMed DOI
Ashburner M., Ball C.A., Blake J.A., et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
The Gene Ontology Consortium. Aleksander S.A., Balhoff J., Carbon S., et al. The gene ontology knowledgebase in 2023. Genetics. 2023;224:31. doi: 10.1093/genetics/iyad031. PubMed DOI PMC
Kanehisa M., Furumichi M., Sato Y., et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:587–592. doi: 10.1093/nar/gkac963. PubMed DOI PMC
R Core Team European Environment Agency. 2020 https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 Seen 9. 6. 2024. Available online at:
Touleimat N., Tost J. Complete pipeline for Infinium® Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4:325–341. doi: 10.2217/epi.12.21. PubMed DOI
Fleischer T., Frigessi A., Johnson K.C., et al. Genome-wide DNA methylation profiles in progression to in situand invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol. 2014;15:435. doi: 10.1186/PREACCEPT-2333349012841587. PubMed DOI PMC
Fortin J.-P., Triche T.J., Hansen K.D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2016;33:558–560. doi: 10.1093/bioinformatics/btw691. PubMed DOI PMC
Maksimovic J., Gordon L., Oshlack A. SWAN: subset-quantile within array normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13:44. doi: 10.1186/gb-2012-13-6-r44. PubMed DOI PMC
Du P., Zhang X., Huang C.-C., et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinf. 2010;11:587. doi: 10.1186/1471-2105-11-587. PubMed DOI PMC
Pidsley R., Zotenko E., Peters T.J., et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17:208. doi: 10.1186/s13059-016-1066-1. PubMed DOI PMC
Seborova K., Hlavac V., Holy P., et al. Complex molecular profile of DNA repair genes in epithelial ovarian carcinoma patients with different sensitivity to platinum-based therapy. Front. Oncol. 2022;12 doi: 10.3389/fonc.2022.1016958. PubMed DOI PMC
Bibikova M., Le J., Barnes B., et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics. 2009;1:177–200. doi: 10.2217/epi.09.14. PubMed DOI
Kuhn E., Meeker A.K., Visvanathan K., et al. Telomere length in different histologic types of ovarian carcinoma with emphasis on clear cell carcinoma. Mod. Pathol. 2011;24:1139–1145. doi: 10.1038/modpathol.2011.67. PubMed DOI PMC
Kotsopoulos J., Prescott J., De Vivo I., et al. Telomere length and mortality following a diagnosis of ovarian cancer. Cancer Epidemiol. Biomark. Prev. 2014;23:2603–2606. doi: 10.1158/1055-9965.EPI-14-0885. PubMed DOI PMC
Falandry C., Horard B., Bruyas A., et al. Telomere length is a prognostic biomarker in elderly advanced ovarian cancer patients: a multicenter GINECO study. Aging. 2015;7:1066–1076. doi: 10.18632/aging.100840. PubMed DOI PMC
Sun P.-M., Wei L.-H., Luo M.-Y., et al. The telomerase activity and expression of hTERT gene can serve as indicators in the anti-cancer treatment of human ovarian cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2007;130:249–257. doi: 10.1016/j.ejogrb.2006.01.028. PubMed DOI
Zaug A.J., Podell E.R., Nandakumar J., Cech T.R. Functional interaction between telomere protein TPP1 and telomerase. Genes Dev. 2010;24:613–622. doi: 10.1101/gad.1881810. PubMed DOI PMC
Yang L., Wang W., Hu L., et al. Telomere-binding protein TPP1 modulates telomere homeostasis and confers radioresistance to human colorectal cancer cells. PLoS One. 2013;8 doi: 10.1371/journal.pone.0081034. PubMed DOI PMC
Widschwendter A., Muller H., Hubalek M., et al. Methylation status and expression of human telomerase reverse transcriptase in ovarian and cervical cancer. Gynecol. Oncol. 2004;93:407–416. doi: 10.1016/j.ygyno.2004.01.036. PubMed DOI
Liu H., Liu Q., Ge Y., et al. hTERT promotes cell adhesion and migration independent of telomerase activity. Sci. Rep. 2016;6 doi: 10.1038/srep22886. PubMed DOI PMC
Hannen R., Bartsch J.W. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett. 2018;592:2023–2031. doi: 10.1002/1873-3468.13084. PubMed DOI
Romaniuk-Drapała A., Toton E., Konieczna N., et al. hTERT downregulation attenuates resistance to DOX, impairs FAK-mediated adhesion, and leads to autophagy induction in breast cancer cells. Cells. 2021;10:867. doi: 10.3390/cells10040867. PubMed DOI PMC
Chi T., Wang M., Wang X., et al. PPAR-γ modulators as current and potential cancer treatments. Front. Oncol. 2021;11 doi: 10.3389/fonc.2021.737776. PubMed DOI PMC
Dai L., Song K., Di W. Adipocytes: active facilitators in epithelial ovarian cancer progression? J. Ovarian Res. 2020;13:115. doi: 10.1186/s13048-020-00718-4. PubMed DOI PMC
Mukherjee A., Chiang C.-Y., Daifotis H.A., et al. Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Res. 2020;80:1748–1761. doi: 10.1158/0008-5472.CAN-19-1999. PubMed DOI PMC
Gharpure K.M., Pradeep S., Sans M., et al. FABP4 as a key determinant of metastatic potential of ovarian cancer. Nat. Commun. 2018;9:2923. doi: 10.1038/s41467-018-04987-y. PubMed DOI PMC
Jiang M., Karsenberg R., Bianchi F., et al. CD36 as a double-edged sword in cancer. Immunol. Lett. 2024;265:7–15. doi: 10.1016/j.imlet.2023.12.002. PubMed DOI
Ladanyi A., Mukherjee A., Kenny H.A., et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37:2285–2301. doi: 10.1038/s41388-017-0093-z. PubMed DOI PMC
Zhou S., Wang R., Xiao H. Adipocytes induce the resistance of ovarian cancer to carboplatin through ANGPTL4. Oncol. Rep. 2020;44:927–938. doi: 10.3892/or.2020.7647. PubMed DOI PMC
Jayawardhana A.M.D.S., Bhandari S., Kaspi-Kaneti A.W., et al. Visible light-activatable platinum(IV) prodrugs harnessing CD36 for ovarian cancer therapy. Dalton Trans. 2023;52:10942–10950. doi: 10.1039/d3dt01292a. PubMed DOI PMC