Food Safety and Health Concerns of Synthetic Food Colors: An Update

. 2024 Jun 27 ; 12 (7) : . [epub] 20240627

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39058118

The toxicity of food additives is widely studied and concerns many consumers worldwide. Synthetic food colors are often considered an unnecessary risk to consumer health. Since the European Food Safety Authority's (EFSA) re-evaluation between 2009 and 2014, the body of scientific literature on food colors has grown, and new evaluations are being published by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Therefore, this narrative review aims to review the toxicological data that have become available since 2014. The reviewed colors are Quinoline Yellow, Sunset Yellow, Azorubine, Amaranth, Ponceau 4R, Erythrosine, Allura Red, Patent Blue, Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black, Brown HT, and Lithol Rubine BK. Tartrazine was not included in this paper; the overwhelming amount of recent data on Tartrazine toxicity requires more space than this review can provide. The issues regarding the toxicity of synthetic food colors and real population exposures are being regularly examined and reviewed by relevant authorities, such as the EFSA and JECFA. The current ADI limits set by the authorities are mostly in agreement, and they seem safe. However, the EFSA and JECFA assessments of some of the colors are more than a decade old, and new evidence will soon be required.

Zobrazit více v PubMed

Amchova P., Kotolova H., Ruda-Kucerova J. Health Safety Issues of Synthetic Food Colorants. Regul. Toxicol. Pharmacol. 2015;73:914–922. doi: 10.1016/j.yrtph.2015.09.026. PubMed DOI

Oplatowska-Stachowiak M., Elliott C.T. Food Colors: Existing and Emerging Food Safety Concerns. Crit. Rev. Food Sci. Nutr. 2017;57:524–548. doi: 10.1080/10408398.2014.889652. PubMed DOI

EFSA Panel on Food Additives and Nutrient Sources Added to Food Scientific Opinion on the Re-Evaluation of Quinoline Yellow (E 104) as a Food Additive. EFSA J. 2009;7:1329. doi: 10.2903/j.efsa.2009.1329. DOI

World Health Organization . Evaluation of Certain Food Additives: Eighty-Second Report of the Joint FAO. World Health Organization; Geneva, Switzerland: 2016.

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Reconsideration of the Temporary ADI and Refined Exposure Assessment for Sunset Yellow FCF (E 110) EFSA J. 2014;12:3765. doi: 10.2903/j.efsa.2014.3765. DOI

World Health Organization . Evaluation of Certain Food Additives and Contaminants: Seventy-Fourth [74th] Report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; Geneva, Switzerland: 2011.

EFSA Panel on Food Additives and Nutrient Sources Added to Food Scientific Opinion on the Re-Evaluation of Azorubine/Carmoisine (E 122) as a Food Additive. EFSA J. 2009;7:1332. doi: 10.2903/j.efsa.2009.1332. DOI

Joint FAO/WHO Expert Committee on Food Additives (JECFA) Evaluation of Certain Food Additives and Contaminants: Twenty-Seventh Report of the Joint FAO. World Health Organization; Geneva, Switzerland: 1983. PubMed

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-Evaluation of Amaranth (E 123) as a Food Additive. EFSA J. 2010;8:1649. doi: 10.2903/j.efsa.2010.1649. DOI

Joint FAO/WHO Expert Committee on Food Additives (JECFA) Evaluation of Certain Food Additives and Contaminants: Twenty-Eighth Report of the Joint FAO. WHO; Geneva, Switzerland: 1984.

EFSA Panel on Food Additives and Nutrient Sources Added to Food Scientific Opinion on the Re-Evaluation of Ponceau 4R (E 124) as a Food Additive. EFSA J. 2009;7:1328. doi: 10.2903/j.efsa.2009.1328. DOI

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-Evaluation of Erythrosine (E 127) as a Food Additive. EFSA J. 2011;9:1854. doi: 10.2903/j.efsa.2011.1854. DOI

World Health Organization . Evaluation of Certain Food Additives: Eighty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives. Volume 965 World Health Organization; Geneva, Switzerland: 2019.

EFSA Panel on Food Additives and Nutrient Sources Added to Food Scientific Opinion on the Re-Evaluation of Allura Red AC (E 129) as a Food Additive. EFSA J. 2009;7:1327. doi: 10.2903/j.efsa.2009.1327. DOI

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-Evaluation of Patent Blue V (E 131) as a Food Additive. EFSA J. 2013;11:2818. doi: 10.2903/j.efsa.2013.2818. DOI

World Health Organization . Evaluation of Certain Food Additives and Contaminants: Twenty Sixth Report of the Joint FAO/WHO Expert Comittee on Food Additives. WHO; Geneva, Switzerland: 1982.

EFSA Panel on Food additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-Evaluation of Indigo Carmine (E 132) as a Food Additive. EFSA J. 2014;12:3768. doi: 10.2903/j.efsa.2014.3768. DOI

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-Evaluation of Brilliant Blue FCF (E 133) as a Food Additive. EFSA J. 2010;8:1853. doi: 10.2903/j.efsa.2010.1853. DOI

World Health Organization . Evaluation of Certain Food Additives: Eighty-Fourth Report of the Joint FAO. World Health Organization; Geneva, Switzerland: 2017.

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-Evaluation of Green S (E 142) as a Food Additive. EFSA J. 2010;8:1851. doi: 10.2903/j.efsa.2010.1851. DOI

World Health Organization . Eighteenth Report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; Geneva, Switzerland: 1974.

EFSA Panel on Food Additives and Nutrient Sources (ANS) Scientific Opinion on the Re-Evaluation of Brown HT (E 155) as a Food Additive. EFSA J. 2010;8:1536. doi: 10.2903/j.efsa.2010.1536. DOI

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-Evaluation of Brilliant Black BN (E 151) as a Food Additive. EFSA J. 2010;8:1540. doi: 10.2903/j.efsa.2010.1540. DOI

World Health Organization . Evaluation of Certain Food Additives: Eighty-Seventh Report of the Joint FAO. World Health Organization; Geneva, Switzerland: 2019.

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the Re-Evaluation of Litholrubine BK (E 180) as a Food Additive. EFSA J. 2010;8:1586. doi: 10.2903/j.efsa.2010.1586. DOI

European Food Safety Authority Refined Exposure Assessment for Quinoline Yellow (E 104) EFSA J. 2015;13:4070. doi: 10.2903/j.efsa.2015.4070. DOI

Khan M.S., Bhatt S., Tabrez S., Rehman M.T., Alokail M.S., AlAjmi M.F. Quinoline Yellow (Food Additive) Induced Conformational Changes in Lysozyme: A Spectroscopic, Docking and Simulation Studies of Dye-Protein Interactions. Prep. Biochem. Biotechnol. 2020;50:673–681. doi: 10.1080/10826068.2020.1725774. PubMed DOI

Khan M.S., Rehman M.T., Bhat S.A., Tabrez S., Hussain A., Husain F.M., AlAjmi M.F., Alamery S.F., Sumbul S. Food Additive Dye (Quinoline Yellow) Promotes Unfolding and Aggregation of Myoglobin: A Spectroscopic and Molecular Docking Analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019;214:216–226. doi: 10.1016/j.saa.2019.01.090. PubMed DOI

Tarnow P., Zordick C., Bottke A., Fischer B., Kühne F., Tralau T., Luch A. Characterization of Quinoline Yellow Dyes As Transient Aryl Hydrocarbon Receptor Agonists. Chem. Res. Toxicol. 2020;33:742–750. doi: 10.1021/acs.chemrestox.9b00351. PubMed DOI

Chequer F.M., Venancio V.P., Almeida M.R., Aissa A.F., Bianchi M.L.P., Antunes L.M. Erythrosine B and Quinoline Yellow Dyes Regulate DNA Repair Gene Expression in Human HepG2 Cells. Toxicol. Ind. Health. 2017;33:765–774. doi: 10.1177/0748233717715186. PubMed DOI

Staples J.W., Stine J.M., Mäki-Lohiluoma E., Steed E., George K.M., Thompson C.M., Woodahl E.L. Food Dyes as P-Glycoprotein Modulators. Food Chem. Toxicol. 2020;146:111785. doi: 10.1016/j.fct.2020.111785. PubMed DOI PMC

Rovina K., Siddiquee S., Shaarani S.M. Highly Sensitive Electrochemical Determination of Sunset Yellow in Commercial Food Products Based on CHIT/GO/MWCNTs/AuNPs/GCE. Food Control. 2017;82:66–73. doi: 10.1016/j.foodcont.2017.06.029. DOI

Supramaniam G., Warner J.O. Artificial Food Additive Intolerance in Patients with Angio-Oedema and Urticaria. Lancet. 1986;328:907–909. doi: 10.1016/S0140-6736(86)90423-X. PubMed DOI

Van Bever H.P., Docx M., Stevens W.J. Food and Food Additives in Severe Atopic Dermatitis. Allergy. 1989;44:588–594. doi: 10.1111/j.1398-9995.1989.tb04205.x. PubMed DOI

Jiang L.-L., Li K., Yan D.-L., Yang M.-F., Ma L., Xie L.-Z. Toxicity Assessment of 4 Azo Dyes in Zebrafish Embryos. Int. J. Toxicol. 2020;39:115–123. doi: 10.1177/1091581819898396. PubMed DOI

Joshi V., Pancharatna K. Food Colorant Sunset Yellow (E110) Intervenes Developmental Profile of Zebrafish (Danio rerio) J. Appl. Toxicol. 2019;39:571–581. doi: 10.1002/jat.3747. PubMed DOI

Colakoglu F., Selcuk M.L. The Embryotoxic Effects of in Ovo Administered Sunset Yellow FCF in Chick Embryos. Vet. Sci. 2021;8:31. doi: 10.3390/vetsci8020031. PubMed DOI PMC

Çolakoğlu F., Selçuk M.L. Effects of Sunset Yellow FCF on Immune System Organs during Different Chicken Embryonic Periods. J. Vet. Res. 2020;64:597. doi: 10.2478/jvetres-2020-0064. PubMed DOI PMC

Bastaki M., Mendes O.R., Bauter M.R., Taylor S.V. Assessment of FD&C Yellow No. 6 (Sunset Yellow FCF) Effects on Sperm Count, Motility and Viability in the Rat in a 28-Day Toxicity Study. Regul. Toxicol. Pharmacol. 2019;108:104479. doi: 10.1016/j.yrtph.2019.104479. PubMed DOI

Pandir D. DNA Damage in Human Germ Cell Exposed to the Some Food Additives In Vitro. Cytotechnology. 2016;68:725–733. doi: 10.1007/s10616-014-9824-y. PubMed DOI PMC

Dwivedi K., Kumar G. Genetic Damage Induced by a Food Coloring Dye (Sunset Yellow) on Meristematic Cells of Brassica campestris L. J. Environ. Public Health. 2015;2015:e319727. doi: 10.1155/2015/319727. PubMed DOI PMC

Haverić A., Haverić S., Hadžić M., Lojo-Kadrić N., Ibrulj S. Genotoxicity and Cytotoxicity Analysis of Curcumin and Sunset Yellow in Human Lymphocyte Culture. Cell. Mol. Biol. 2018;64:87–91. doi: 10.14715/cmb/2018.64.3.14. PubMed DOI

Ali M.Y., Hassan G.M., Hassan A.M.S., Mohamed Z.A., Ramadan M.F. In Vivo Genotoxicity Assessment of Sunset Yellow and Sodium Benzoate in Female Rats. Drug Chem. Toxicol. 2020;43:504–513. doi: 10.1080/01480545.2018.1510416. PubMed DOI

Saxena B., Sharma S. Food Color Induced Hepatotoxicity in Swiss Albino Rats, Rattus Norvegicus. Toxicol. Int. 2015;22:152. doi: 10.4103/0971-6580.172286. PubMed DOI PMC

Khayyat L.I., Essawy A.E., Sorour J.M., Soffar A. Sunset Yellow and Allura Red Modulate Bcl2 and COX2 Expression Levels and Confer Oxidative Stress-Mediated Renal and Hepatic Toxicity in Male Rats. PeerJ. 2018;6:e5689. doi: 10.7717/peerj.5689. PubMed DOI PMC

Kong X., Wang X., Qin Y., Han J. Effects of Sunset Yellow on Proliferation and Differentiation of Intestinal Epithelial Cells in Murine Intestinal Organoids. J. Appl. Toxicol. 2021;41:953–963. doi: 10.1002/jat.4080. PubMed DOI

Ali M.Y., Hassan A.M.S., Mohamed Z.A., Ramadan M.F. Effect of Food Colorants and Additives on the Hematological and Histological Characteristics of Albino Rats. Toxicol. Environ. Health Sci. 2019;11:155–167. doi: 10.1007/s13530-019-0400-x. DOI

Elbanna K., Sarhan O.M., Khider M., Elmogy M., Abulreesh H.H., Shaaban M.R. Microbiological, Histological, and Biochemical Evidence for the Adverse Effects of Food Azo Dyes on Rats. J. Food Drug Anal. 2017;25:667–680. doi: 10.1016/j.jfda.2017.01.005. PubMed DOI PMC

European Food Safety Authority Refined Exposure Assessment for Azorubine/Carmoisine (E 122) EFSA J. 2015;13:4072. doi: 10.2903/j.efsa.2015.4072. DOI

Khan I.S., Ali S., Dar K.B., Murtaza M., Ali M.N., Ganie S.A., Dar S.A. Toxicological Analysis of Synthetic Dye Orange Red on Expression of NFκB-Mediated Inflammatory Markers in Wistar Rats. Drug Chem. Toxicol. 2022;45:2626–2636. doi: 10.1080/01480545.2021.1979579. PubMed DOI

Al Reza M.S., Hasan M.M., Kamruzzaman M., Hossain M.I., Zubair M.A., Bari L., Abedin M.Z., Reza M.A., Khalid-Bin-Ferdaus K.M., Haque K.M.F., et al. Study of a Common Azo Food Dye in Mice Model: Toxicity Reports and Its Relation to Carcinogenicity. Food Sci. Nutr. 2019;7:667–677. doi: 10.1002/fsn3.906. PubMed DOI PMC

Panachiyil G.M., Babu T., Sebastian J., Doddaiah N. A Pediatric Case Report of Fixed Drug Eruption Related to Carmoisine Colorant Present in Paracetamol Syrup. Indian J. Pharmacol. 2019;51:279–281. doi: 10.4103/ijp.IJP_29_19. PubMed DOI PMC

Gülseren D., Hapa A., Ersoy-Evans S., Elçin G., Karaduman A. Is There a Role of Food Additives in Recurrent Aphthous Stomatitis? A Prospective Study with Patch Testing. Int. J. Dermatol. 2017;56:302–306. doi: 10.1111/ijd.13515. PubMed DOI

Al-Shammari E., Epuru S., Bano R., Adnan M., Khan S. Allura Red, Carmoisine and Indigo Carmine Inhibit Reactive Oxygen Species Production by Human Polymorphonuclear Leukocytesin Vitro. Egypt. Acad. J. Biol. Sci. C Physiol. Mol. Biol. 2016;8:11–22. doi: 10.21608/eajbsc.2016.13677. DOI

Leo L., Loong C., Ho X.L., Raman M.F.B., Suan M.Y.T., Loke W.M. Occurrence of Azo Food Dyes and Their Effects on Cellular Inflammatory Responses. Nutrition. 2018;46:36–40. doi: 10.1016/j.nut.2017.08.010. PubMed DOI

Amin K.A., Hameid H.A., II, Abd Elsttar A.H. Effect of Food Azo Dyes Tartrazine and Carmoisine on Biochemical Parameters Related to Renal, Hepatic Function and Oxidative Stress Biomarkers in Young Male Rats. Food Chem. Toxicol. 2010;48:2994–2999. doi: 10.1016/j.fct.2010.07.039. PubMed DOI

Raposa B., Pónusz R., Gerencsér G., Budán F., Gyöngyi Z., Tibold A., Hegyi D., Kiss I., Koller Á., Varjas T. Food Additives: Sodium Benzoate, Potassium Sorbate, Azorubine, and Tartrazine Modify the Expression of NFκB, GADD45α, and MAPK8 Genes. Physiol. Int. 2016;103:334–343. doi: 10.1556/2060.103.2016.3.6. PubMed DOI

Montaser M., Abiya R.A., Afifi M., Saddick S., Allogmani A.S., Almaghrabi O.A. Effect of Natural and Synthetic Food Colorants on Spermatogenesis and the Expression of Its Controlling Genes; Proceedings of the 3rd International Conference, Veterinary Medicine In-Between Health and Economy (VMHE); Hurghada, Egypt. 16–19 October 2018;

Kiziltan T., Baran A., Kankaynar M., Şenol O., Sulukan E., Yildirim S., Ceyhun S.B. Effects of the Food Colorant Carmoisine on Zebrafish Embryos at a Wide Range of Concentrations. Arch. Toxicol. 2022;96:1089–1099. doi: 10.1007/s00204-022-03240-2. PubMed DOI PMC

Khan I.S., Ali M.N., Hamid R., Ganie S.A. Genotoxic Effect of Two Commonly Used Food Dyes Metanil Yellow and Carmoisine Using Allium cepa L. as Indicator. Toxicol. Rep. 2020;7:370–375. doi: 10.1016/j.toxrep.2020.02.009. PubMed DOI PMC

Basu A., Suresh Kumar G. Interaction and Inhibitory Influence of the Azo Dye Carmoisine on Lysozyme Amyloid Fibrillogenesis. Mol. Biosyst. 2017;13:1552–1564. doi: 10.1039/C7MB00207F. PubMed DOI

Radomski J.L., Mellinger T.J. The Absorption, Fate and Excretion in Rats of the Water-Soluble Azo Dyes, FD&C Red No. 2, FD&C Red No. 4, and FD&C Yellow No. 6. J. Pharmacol. Exp. Ther. 1962;136:259–266. PubMed

Phillips J.C., Bex C.S., Mendis D., Walters D.G., Gaunt I.F. Metabolic Disposition of 14C-Labelled Amaranth in the Rat, Mouse and Guinea-Pig. Food Chem. Toxicol. 1987;25:947–954. doi: 10.1016/0278-6915(87)90288-2. PubMed DOI

Ruddick J.A., Craig J., Stavric B., Willes R.F., Collins B. Uptake, Distribution and Metabolism of [14C] Amaranth in the Female Rat. Food Cosmet. Toxicol. 1979;17:435–442. doi: 10.1016/0015-6264(79)90001-4. PubMed DOI

Ruddick J.A., Craig J., Collins B. Teratology. Volume 17. Wiley-Liss Div John Wiley & Sons Inc.; New York, NY, USA: 1978. Pharmacokinetic and Transplacental Study of [C-14] Amaranth in Rat; p. A51.

Ruddick J.A., Willes R.F., Stavric B., Munro I. Teratology. Volume 15. Wiley-Liss Div John Wiley & Sons Inc.; New York, NY, USA: 1977. Pharmacokinetics and Distribution of (C-14) Amaranth in Rat; pp. A31–A32.

Jabeen H.S., ur Rahman S., Mahmood S., Anwer S. Genotoxicity Assessment of Amaranth and Allura Red Using Saccharomyces Cerevisiae. Bull. Environ. Contam. Toxicol. 2013;90:22–26. doi: 10.1007/s00128-012-0870-x. PubMed DOI

European Food Safety Authority Refined Exposure Assessment for Amaranth (E 123) EFSA J. 2013;11:3442. doi: 10.2903/j.efsa.2013.3442. DOI

Basu A., Kumar G.S. Interaction of Toxic Azo Dyes with Heme Protein: Biophysical Insights into the Binding Aspect of the Food Additive Amaranth with Human Hemoglobin. J. Hazard. Mater. 2015;289:204–209. doi: 10.1016/j.jhazmat.2015.02.044. PubMed DOI

European Food Safety Authority Refined Exposure Assessment for Ponceau 4R (E 124) EFSA J. 2015;13:4073. doi: 10.2903/j.efsa.2015.4073. DOI

Yamjala K., Nainar M.S., Kumar Varma S., Ambore N. Separation, Identification and Mutagenic Assessment of the Photodegradation Products of Ponceau 4R (E124) in a Beverage. Anal. Methods. 2016;8:5017–5024. doi: 10.1039/C6AY00716C. DOI

Grigorenko A., Yeroshenko G., Shevchenko K., Lisachenko O., Perederii N. REMODELING OF THE RAT DUODENAL WALL UNDER THE EFFECT OF COMPLEX FOOD ADDITIVES OF MONOSODIUM GLUTAMATE, SODIUM NITRITE AND PONCEAU 4R. Georgian Med. News. 2021;314:145–150. PubMed

Wang Y.-F., Chen I.-W., Subendran S., Kang C.-W., Panigrahi B., Fu T.-F., Chen C.-Y. Edible Additive Effects on Zebrafish Cardiovascular Functionality with Hydrodynamic Assessment. Sci. Rep. 2020;10:16243. doi: 10.1038/s41598-020-73455-9. PubMed DOI PMC

Lemoine A., Pauliat-Desbordes S., Challier P., Tounian P. Adverse Reactions to Food Additives in Children: A Retrospective Study and a Prospective Survey. Arch. Pédiatrie. 2020;27:368–371. doi: 10.1016/j.arcped.2020.07.005. PubMed DOI

Merinas-Amo R., Martínez-Jurado M., Jurado-Güeto S., Alonso-Moraga Á., Merinas-Amo T. Biological Effects of Food Coloring in In Vivo and In Vitro Model Systems. Foods. 2019;8:176. doi: 10.3390/foods8050176. PubMed DOI PMC

Wopara I., Modo E.U., Mobisson S.K., Olusegun G.A., Umoren E.B., Orji B.O., Mounmbegna P.E., Ujunwa S.O. Synthetic Food Dyes Cause Testicular Damage via Up-Regulation of pro-Inflammatory Cytokines and down-Regulation of FSH-R and TESK-1 Gene Expression. JBRA Assist. Reprod. 2021;25:341–348. doi: 10.5935/1518-0557.20200097. PubMed DOI PMC

Wopara I., Modo E.U., Adebayo O.G., Mobisson S.K., Nwigwe J.O., Ogbu P.I., Nwankwo V.U., Ejeawa C.U. Anxiogenic and Memory Impairment Effect of Food Color Exposure: Upregulation of Oxido-Neuroinflammatory Markers and Acetyl-Cholinestrase Activity in the Prefrontal Cortex and Hippocampus. Heliyon. 2021;7:e06378. doi: 10.1016/j.heliyon.2021.e06378. PubMed DOI PMC

Iheanyichukwu W., Uwaezuoke C.A., Amanda I. The Effect of Some Synthetic Food Colorants on Selected Biochemical Indices of Male Wistar Rats. Eur. J. Nutr. Food Saf. 2019;10:149–155. doi: 10.9734/ejnfs/2019/v10i230107. DOI

Iheanyichukwu W., Adegoke A.O., Adebayo O.G., Emmanuel U M., Egelege A.P., Gona J.T., Orluwene F.M. Combine Colorants of Tartrazine and Erythrosine Induce Kidney Injury: Involvement of TNF-α Gene, Caspase-9 and KIM-1 Gene Expression and Kidney Functions Indices. Toxicol. Mech. Methods. 2021;31:67–72. doi: 10.1080/15376516.2020.1828523. PubMed DOI

Ovalioglu A.O., Ovalioglu T.C., Arslan S., Canaz G., Aydin A.E., Sar M., Emel E. Effects of Erythrosine on Neural Tube Development in Early Chicken Embryos. World Neurosurg. 2020;134:e822–e825. doi: 10.1016/j.wneu.2019.11.017. PubMed DOI

Kuo C.-T., Chen Y.-L., Hsu W.-T., How S.-C., Cheng Y.-H., Hsueh S.-S., Liu H.-S., Lin T.-H., Wu J.W., Wang S.S.-S. Investigating the Effects of Erythrosine B on Amyloid Fibril Formation Derived from Lysozyme. Int. J. Biol. Macromol. 2017;98:159–168. doi: 10.1016/j.ijbiomac.2017.01.110. PubMed DOI

Teerakapong A., Damrongrungruang T., Sattayut S., Morales N.P., Sangpanya A., Tanapoomchai M. Fungicidal Effect of Combined Nano TiO2 with Erythrosine for Mediated Photodynamic Therapy on Candida Albicans: An In Vitro Study. Lasers Dent. Sci. 2017;1:101–106. doi: 10.1007/s41547-017-0014-z. DOI

Chen C.-P., Chen C.-T., Tsai T. Chitosan Nanoparticles for Antimicrobial Photodynamic Inactivation: Characterization and In Vitro Investigation. Photochem. Photobiol. 2012;88:570–576. doi: 10.1111/j.1751-1097.2012.01101.x. PubMed DOI

Tsuda S., Murakami M., Matsusaka N., Kano K., Taniguchi K., Sasaki Y.F. DNA Damage Induced by Red Food Dyes Orally Administered to Pregnant and Male Mice. Toxicol. Sci. 2001;61:92–99. doi: 10.1093/toxsci/61.1.92. PubMed DOI

Bastaki M., Farrell T., Bhusari S., Pant K., Kulkarni R. Lack of Genotoxicity In Vivo for Food Color Additive Allura Red AC. Food Chem. Toxicol. 2017;105:308–314. doi: 10.1016/j.fct.2017.04.037. PubMed DOI

Honma M. Evaluation of the In Vivo Genotoxicity of Allura Red AC (Food Red No. 40) Food Chem. Toxicol. 2015;84:270–275. doi: 10.1016/j.fct.2015.09.007. PubMed DOI

Noorafshan A., Hashemi M., Karbalay-Doust S., Karimi F. High Dose Allura Red, Rather than the ADI Dose, Induces Structural and Behavioral Changes in the Medial Prefrontal Cortex of Rats and Taurine Can Protect It. Acta Histochem. 2018;120:586–594. doi: 10.1016/j.acthis.2018.07.004. PubMed DOI

Chen L., He Z., Reis B.S., Gelles J.D., Chipuk J.E., Ting A.T., Spicer J.A., Trapani J.A., Furtado G.C., Lira S.A. IFN-Γ+ Cytotoxic CD4+ T Lymphocytes Are Involved in the Pathogenesis of Colitis Induced by IL-23 and the Food Colorant Red 40. Cell. Mol. Immunol. 2022;19:777–790. doi: 10.1038/s41423-022-00864-3. PubMed DOI PMC

He Z., Chen L., Catalan-Dibene J., Bongers G., Faith J.J., Suebsuwong C., DeVita R.J., Shen Z., Fox J.G., Lafaille J.J., et al. Food Colorants Metabolized by Commensal Bacteria Promote Colitis in Mice with Dysregulated Expression of Interleukin-23. Cell Metab. 2021;33:1358–1371. doi: 10.1016/j.cmet.2021.04.015. PubMed DOI PMC

Wu D., Yan J., Wang J., Wang Q., Li H. Characterisation of Interaction between Food Colourant Allura Red AC and Human Serum Albumin: Multispectroscopic Analyses and Docking Simulations. Food Chem. 2015;170:423–429. doi: 10.1016/j.foodchem.2014.08.088. PubMed DOI

Esmaeili S., Ashrafi-Kooshk M.R., Khaledian K., Adibi H., Rouhani S., Khodarahmi R. Degradation Products of the Artificial Azo Dye, Allura Red, Inhibit Esterase Activity of Carbonic Anhydrase II: A Basic In Vitro Study on the Food Safety of the Colorant in Terms of Enzyme Inhibition. Food Chem. 2016;213:494–504. doi: 10.1016/j.foodchem.2016.06.078. PubMed DOI

Khodarahmi R., Kooshk M.R.A., Khaledian K. Allura Red, the Artificial Azo Dye, Inhibits Esterase Activity of Carbonic Anhydrase II: A Preliminary Study on the Food Safety in Term of Enzyme Inhibition. J. Rep. Pharm. Sci. 2015;4:43–52. doi: 10.4103/2322-1232.222574. DOI

Balaei F., Ansari M., Farhadian N., Moradi S., Shahlaei M. Interactions and Effects of Food Additive Dye Allura Red on Pepsin Structure and Protease Activity; Experimental and Computational Supports. Res. Pharm. Sci. 2021;16:58–70. doi: 10.4103/1735-5362.305189. PubMed DOI PMC

Xiao Q., Liang J., Luo H., Li H., Yang J., Huang S. Investigations of Conformational Structures and Activities of Trypsin and Pepsin Affected by Food Colourant Allura Red. J. Mol. Liq. 2020;319:114359. doi: 10.1016/j.molliq.2020.114359. DOI

Doell D.L., Folmer D.E., Lee H.S., Butts K.M., Carberry S.E. Exposure Estimate for FD&C Colour Additives for the US Population. Food Addit. Contam. Part A. 2016;33:782–797. doi: 10.1080/19440049.2016.1179536. PubMed DOI PMC

Bawazir A.E. Effects of Food Colour Allura Red (No. 129) on Some Neurotransmitter, Antioxidant Functions and Bioelement Contents of Kidney and Brain Tissues in Male Albino Rats. Life Sci. J. 2016;13:10–17.

Alsolami M.A. Effect of a Food Additive on Certain Haematological and Biochemical Parameters in Male Albino Rat. Int. J. Zool. Res. 2017;7:1–10.

Perenyei M., Barber Z.E., Gibson J., Hemington-Gorse S., Dobbs T.D. Anaphylactic Reaction Rates to Blue Dyes Used for Sentinel Lymph Node Mapping: Systematic Review and Meta-Analysis. Ann. Surg. 2021;273:1087–1093. doi: 10.1097/SLA.0000000000004061. PubMed DOI

Landim Neves M.I., Silva E.K., Meireles M.A.A. Natural Blue Food Colorants: Consumer Acceptance, Current Alternatives, Trends, Challenges, and Future Strategies. Trends Food Sci. Technol. 2021;112:163–173. doi: 10.1016/j.tifs.2021.03.023. DOI

Pasdaran A., Azarpira N., Heidari R., Nourinejad S., Zare M., Hamedi A. Effects of Some Cosmetic Dyes and Pigments on the Proliferation of Human Foreskin Fibroblasts and Cellular Oxidative Stress; Potential Cytotoxicity of Chlorophyllin and Indigo Carmine on Fibroblasts. J. Cosmet. Dermatol. 2022;21:3979–3985. doi: 10.1111/jocd.14695. PubMed DOI

Martynov V.O., Brygadyrenko V.V. The Influence of the Synthetic Food Colourings Tartrazine, Allura Red and Indigo Carmine on the Body Weight of Tenebrio molitor (Coleoptera, Tenebrionidae) Larvae. Regul. Mech. Biosyst. 2018;9:479–484. doi: 10.15421/021871. DOI

Farias-Silva E., Cola M., Calvo T.R., Barbastefano V., Ferreira A.L., Michelatto D.D.P., de Almeida A.C.A., Hiruma-Lima C.A., Vilegas W., Brito A.R.M.S. Antioxidant Activity of Indigo and Its Preventive Effect against Ethanol-Induced DNA Damage in Rat Gastric Mucosa. Planta Med. 2007;73:1241–1246. doi: 10.1055/s-2007-981613. PubMed DOI

Rancan E.A., Frota E.I., de Freitas T.M.N., Jordani M.C., Évora P.R.B., Castro-e-Silva O. Evaluation of Indigo Carmine on Hepatic Ischemia and Reperfusion Injury. Acta Cir. Bras. 2020;35:e202000901. doi: 10.1590/s0102-865020200090000001. PubMed DOI PMC

Kus E., Eroglu H.E. Genotoxic and Cytotoxic Effects of Sunset Yellow and Brilliant Blue, Colorant Food Additives, on Human Blood Lymphocytes. Pak. J. Pharm. Sci. 2015;28:227–230. PubMed

Yuan C.J., Marikawa Y. Developmental Toxicity Assessment of Common Excipients Using a Stem Cell-Based In Vitro Morphogenesis Model. Food Chem. Toxicol. 2017;109:376–385. doi: 10.1016/j.fct.2017.09.023. PubMed DOI PMC

Motwadie M.E., Hashem M.M., Abo-EL-Sooud K., Abd-Elhakim Y.M., El-Metwally A.E., Ali H.A. Modulation of Immune Functions, Inflammatory Response, and Cytokine Production Following Long-Term Oral Exposure to Three Food Additives; Thiabendazole, Monosodium Glutamate, and Brilliant Blue in Rats. Int. Immunopharmacol. 2021;98:107902. doi: 10.1016/j.intimp.2021.107902. PubMed DOI

Hocking K.M., Luo W., Li F.D., Komalavilas P., Brophy C., Cheung-Flynn J. Brilliant Blue FCF Is a Nontoxic Dye for Saphenous Vein Graft Marking That Abrogates Response to Injury. J. Vasc. Surg. 2016;64:210–218. doi: 10.1016/j.jvs.2014.12.059. PubMed DOI PMC

Sofoluwe A., Bacchetta M., Badaoui M., Kwak B.R., Chanson M. ATP Amplifies NADPH-Dependent and -Independent Neutrophil Extracellular Trap Formation. Sci. Rep. 2019;9:16556. doi: 10.1038/s41598-019-53058-9. PubMed DOI PMC

Chen Y.-H., Tseng C.-P., How S.-C., Lo C.-H., Chou W.-L., Wang S.S.-S. Amyloid Fibrillogenesis of Lysozyme Is Suppressed by a Food Additive Brilliant Blue FCF. Colloids Surf. B Biointerfaces. 2016;142:351–359. doi: 10.1016/j.colsurfb.2016.02.064. PubMed DOI

European Food Safety Authority Refined Exposure Assessment of Brown HT (E 155) EFSA J. 2014;12:3719. doi: 10.2903/j.efsa.2014.3719. DOI

European Food Safety Authority Refined Exposure Assessment for Brilliant Black BN (E 151) EFSA J. 2015;13:3960. doi: 10.2903/j.efsa.2015.3960. DOI

Meng T., Jia Q., Wong S.-M., Chua K.-B. In Vitro and In Vivo Inhibition of the Infectivity of Human Enterovirus 71 by a Sulfonated Food Azo Dye, Brilliant Black BN. J. Virol. 2019;93:e00061-19. doi: 10.1128/JVI.00061-19. PubMed DOI PMC

May L.T., Briddon S.J., Hill S.J. Antagonist Selective Modulation of Adenosine A1 and A3 Receptor Pharmacology by the Food Dye Brilliant Black BN: Evidence for Allosteric Interactions. Mol. Pharmacol. 2010;77:678–686. doi: 10.1124/mol.109.063065. PubMed DOI PMC

Mota I.G.C., Neves R.A.M.D., Nascimento S.S.D.C., Maciel B.L.L., Morais A.H.D.A., Passos T.S. Artificial Dyes: Health Risks and the Need for Revision of International Regulations. Food Rev. Int. 2023;39:1578–1593. doi: 10.1080/87559129.2021.1934694. DOI

BIBRA (British Industrial Biological Research Association) Toxicity Profile: Lithol Rubine BK. BIBRA Information Services Ltd.; Surrey, UK: 1993.

Sevastre A.-S., Baloi C., Alexandru O., Tataranu L.G., Popescu O.S., Dricu A. The Effect of Azo-Dyes on Glioblastoma Cells In Vitro. Saudi J. Biol. Sci. 2023;30:103599. doi: 10.1016/j.sjbs.2023.103599. PubMed DOI PMC

Leist K.H. Subacute Toxicity Studies of Selected Organic Colorants. Ecotoxicol. Environ. Saf. 1982;6:457–463. doi: 10.1016/0147-6513(82)90026-4. PubMed DOI

Database–European Commission. [(accessed on 5 June 2024)]. Available online: https://food.ec.europa.eu/safety/food-improvement-agents/additives/database_en.

U.S. Food & Drug Administration . Food Additive Listings. FDA; Silver Spring, MD, USA: 2024. [(accessed on 1 June 2024)]. Available online: https://cfsanappsexternal.fda.gov/scripts/fdcc/?set=ColorAdditives&sort=Sort_Unique_ID&order=ASC&startrow=1&type=column&search=Use-current%C2%A4VARCHAR%C2%A4foods.

Pereira H., Deuchande T., Fundo J.F., Leal T., Pintado M.E., Amaro A.L. Painting the Picture of Food Colouring Agents: Near-Ubiquitous Molecules of Everyday Life—A Review. Trends Food Sci. Technol. 2024;143:104249. doi: 10.1016/j.tifs.2023.104249. DOI

Lehto S., Buchweitz M., Klimm A., Straßburger R., Bechtold C., Ulberth F. Comparison of Food Colour Regulations in the EU and the US: A Review of Current Provisions. Food Addit. Contam. Part A. 2017;34:335–355. doi: 10.1080/19440049.2016.1274431. PubMed DOI

Bashir I., Pandey V.K., Dar A.H., Dash K.K., Shams R., Mir S.A., Fayaz U., Khan S.A., Singh R., Zahoor I. Exploring Sources, Extraction Techniques and Food Applications: A Review on Biocolors as next-Generation Colorants. Phytochem. Rev. 2024 doi: 10.1007/s11101-023-09908-6. DOI

Zang E., Jiang L., Cui H., Li X., Yan Y., Liu Q., Chen Z., Li M. Only Plant-Based Food Additives: An Overview on Application, Safety, and Key Challenges in the Food Industry. Food Rev. Int. 2023;39:5132–5163. doi: 10.1080/87559129.2022.2062764. DOI

Chmelík Z., Kotolová H., Piekutowská Z., Horská K., Bartosová L., Suchý P., Kollár P. A Comparison of the Impact of Amaranth Flour and Squalene on Plasma Cholesterol in Mice with Diet-Induced Dyslipidemia. Berl. Munch. Tierarztl. Wochenschr. 2013;126:251–255. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...