A Comparison of the Effects of Continuous Illumination and Day/Night Regimes on PHB Accumulation in Synechocystis Cells

. 2024 Jul 20 ; 14 (7) : . [epub] 20240720

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39063660

Grantová podpora
LM2023050 MEYS CR
I 4082-B25 FWF Austrian Science Fund

Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known. Synechocystis (cyanobacteria) accumulates PHB using light as energy and CO2 as carbon source. The main trigger for PHB accumulation in cyanobacteria is nitrogen and phosphorous depletion with simultaneous surplus of carbon and energy. For the above reasons, obtaining knowledge about external factors influencing PHB accumulation is of highest interest. This study compares the effect of continuous light exposure and day/night (16/8 h) cycles on selected physiology parameters of three Synechocystis strains. We show that continuous illumination at moderate light intensities leads to an increased PHB accumulation in Synechocystis salina CCALA 192 (max. 14.2% CDW - cell dry weight) compared to day/night cycles (3.7% CDW). In addition to PHB content, glycogen and cell size increased, while cell density and cell viability decreased. The results offer new approaches for further studies to gain deeper insights into the role of PHB in cyanobacteria to obtain bioplastics in a more sustainable and environmentally friendly way.

Zobrazit více v PubMed

Drosg B., Fritz I., Gattermayr F., Silvestrini L. Photo-Autotrophic Production of Poly(Hydroxyalkanoates) in Cyanobacteria. Chem. Biochem. Eng. Q. 2015;29:145–156. doi: 10.15255/CABEQ.2014.2254. DOI

Price S., Kuzhiumparambil U., Pernice M., Ralph P.J. Cyanobacterial Polyhydroxybutyrate for Sustainable Bioplastic Production: Critical Review and Perspectives. J. Environ. Chem. Eng. 2020;8:104007. doi: 10.1016/j.jece.2020.104007. DOI

Yashavanth Y., Das M., Maiti S.K. Recent Progress and Challenges in Cyanobacterial Autotrophic Production of Polyhydroxybutyrate (PHB), a Bioplastic. J. Environ. Chem. Eng. 2021;9:105379. doi: 10.1016/j.jece.2021.105379. DOI

Carpine R., Olivieri G., Hellingwerf K.J., Pollio A., Marzocchella A. Industrial Production of Poly-β-Hydroxybutyrate from CO2: Can Cyanobacteria Meet This Challenge? Processes. 2020;8:323. doi: 10.3390/pr8030323. DOI

Fritz I., Meixner K., Neureiter M., Drosg B. Comparing Heterotrophic with Phototrophic PHA Production—Concurring or Complementing Strategies. In: Koller M., editor. The Handbook of Polyhydroxyalkanoates—Microbial Biosynthesis and Feedstocks. CRC Press; Boca Raton, FL, USA: 2021. p. 453. eBook.

Troschl C., Meixner K., Drosg B. Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years’ Working Experience Running a Pilot Plant. Bioengineering. 2017;4:26. doi: 10.3390/bioengineering4020026. PubMed DOI PMC

Lau N.-S., Matsui M., Abdullah A.A.-A. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. [(accessed on 5 March 2018)]. Available online: https://www.hindawi.com/journals/bmri/2015/754934/ PubMed PMC

Meixner K., Daffert C., Dalnodar D., Mrázová K., Hrubanová K., Krzyzanek V., Nebesarova J., Samek O., Šedrlová Z., Slaninova E., et al. Glycogen, Poly(3-Hydroxybutyrate) and Pigment Accumulation in Three Synechocystis Strains When Exposed to a Stepwise Increasing Salt Stress. J. Appl. Phycol. 2022;34:1227–1241. doi: 10.1007/s10811-022-02693-3. PubMed DOI PMC

Comer A.D., Abraham J.P., Steiner A.J., Korosh T.C., Markley A.L., Pfleger B.F. Enhancing Photosynthetic Production of Glycogen-Rich Biomass for Use as a Fermentation Feedstock. Front. Energy Res. 2020;8:93. doi: 10.3389/fenrg.2020.00093. PubMed DOI PMC

Cano M., Holland S.C., Artier J., Burnap R.L., Ghirardi M., Morgan J.A., Yu J. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria. Cell Rep. 2018;23:667–672. doi: 10.1016/j.celrep.2018.03.083. PubMed DOI

Hauf W., Schlebusch M., Hüge J., Kopka J., Hagemann M., Forchhammer K. Metabolic Changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH Sustains Polyhydroxybutyrate Accumulation. Metabolites. 2013;3:101–118. doi: 10.3390/metabo3010101. PubMed DOI PMC

Obruca S., Sedlacek P., Slaninova E., Fritz I., Daffert C., Meixner K., Sedrlova Z., Koller M. Novel Unexpected Functions of PHA Granules. Appl. Microbiol. Biotechnol. 2020;104:4795–4810. doi: 10.1007/s00253-020-10568-1. PubMed DOI

Koch M., Doello S., Gutekunst K., Forchhammer K. PHB Is Produced from Glycogen Turn-over during Nitrogen Starvation in Synechocystis Sp. PCC 6803. Int. J. Mol. Sci. 2019;20:1942. doi: 10.3390/ijms20081942. PubMed DOI PMC

Obruca S., Sedlacek P., Koller M. The Underexplored Role of Diverse Stress Factors in Microbial Biopolymer Synthesis. Bioresour. Technol. 2021;326:124767. doi: 10.1016/j.biortech.2021.124767. PubMed DOI

Taton A., Erikson C., Yang Y., Rubin B.E., Rifkin S.A., Golden J.W., Golden S.S. The Circadian Clock and Darkness Control Natural Competence in Cyanobacteria. Nat. Commun. 2020;11:1688. doi: 10.1038/s41467-020-15384-9. PubMed DOI PMC

van Alphen P., Hellingwerf K.J. Sustained Circadian Rhythms in Continuous Light in Synechocystis Sp. PCC6803 Growing in a Well-Controlled Photobioreactor. PLoS ONE. 2015;10:e0127715. doi: 10.1371/journal.pone.0127715. PubMed DOI PMC

Calzadilla P.I., Kirilovsky D. Revisiting Cyanobacterial State Transitions. Photochem. Photobiol. Sci. 2020;19:585–603. doi: 10.1039/c9pp00451c. PubMed DOI

Nishiyama Y., Murata N. Revised Scheme for the Mechanism of Photoinhibition and Its Application to Enhance the Abiotic Stress Tolerance of the Photosynthetic Machinery. Appl. Microbiol. Biotechnol. 2014;98:8777–8796. doi: 10.1007/s00253-014-6020-0. PubMed DOI

Montgomery B.L. Light-Dependent Governance of Cell Shape Dimensions in Cyanobacteria. Front. Microbiol. 2015;6:514. doi: 10.3389/fmicb.2015.00514. PubMed DOI PMC

Koch M., Berendzen K.W., Forchhammer K. On the Role and Production of Polyhydroxybutyrate (PHB) in the Cyanobacterium Synechocystis Sp. PCC 6803. Life. 2020;10:47. doi: 10.3390/life10040047. PubMed DOI PMC

Kamravamanesh D., Pflügl S., Nischkauer W., Limbeck A., Lackner M., Herwig C. Photosynthetic Poly-β-Hydroxybutyrate Accumulation in Unicellular Cyanobacterium Synechocystis Sp. PCC 6714. AMB Express. 2017;7:143. doi: 10.1186/s13568-017-0443-9. PubMed DOI PMC

Koch M., Bruckmoser J., Scholl J., Hauf W., Rieger B., Forchhammer K. Maximizing PHB Content in Synechocystis Sp. PCC 6803: A New Metabolic Engineering Strategy Based on the Regulator PirC. Microb. Cell Factories. 2020;19:231. doi: 10.1186/s12934-020-01491-1. PubMed DOI PMC

Panda B., Jain P., Sharma L., Mallick N. Optimization of Cultural and Nutritional Conditions for Accumulation of Poly-β-Hydroxybutyrate in Synechocystis Sp. PCC 6803. Bioresour. Technol. 2006;97:1296–1301. doi: 10.1016/j.biortech.2005.05.013. PubMed DOI

Ansari S., Fatma T. Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and Characterization. PLoS ONE. 2016;11:e0158168. doi: 10.1371/journal.pone.0158168. PubMed DOI PMC

Troschl C., Meixner K., Fritz I., Leitner K., Romero A.P., Kovalcik A., Sedlacek P., Drosg B. Pilot-Scale Production of Poly-β-Hydroxybutyrate with the Cyanobacterium Synechocytis Sp. CCALA192 in a Non-Sterile Tubular Photobioreactor. Algal Res. 2018;34:116–125. doi: 10.1016/j.algal.2018.07.011. DOI

Meixner K., Daffert C., Bauer L., Drosg B., Fritz I. PHB Producing Cyanobacteria Found in the Neighborhood—Their Isolation, Purification and Performance Testing. Bioengineering. 2022;9:178. doi: 10.3390/bioengineering9040178. PubMed DOI PMC

Stanier R.Y., Deruelles J., Rippka R., Herdman M., Waterbury J.B. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology. 1979;111:1–61. doi: 10.1099/00221287-111-1-1. DOI

Karr D.B., Waters J.K., Emerich D.W. Analysis of Poly-β-Hydroxybutyrate in Rhizobium Japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection. Appl. Environ. Microbiol. 1983;46:1339–1344. doi: 10.1128/aem.46.6.1339-1344.1983. PubMed DOI PMC

Zavrel T., Sinetova M., Cervený J. Measurement of Chlorophyll a and Carotenoids Concentration in Cyanobacteria. Bio-Protocol. 2015;5:e1467. doi: 10.21769/BioProtoc.1467. DOI

Ritchie R.J. Universal Chlorophyll Equations for Estimating Chlorophylls a, b, c, and d and Total Chlorophylls in Natural Assemblages of Photosynthetic Organisms Using Acetone, Methanol, or Ethanol Solvents. Photosynthetica. 2008;46:115–126. doi: 10.1007/s11099-008-0019-7. DOI

Mravec F., Obruca S., Krzyzanek V., Sedlacek P., Hrubanova K., Samek O., Kucera D., Benesova P., Nebesarova J. Accumulation of PHA Granules in Cupriavidus Necator as Seen by Confocal Fluorescence Microscopy. FEMS Microbiol. Lett. 2016;363:fnw094. doi: 10.1093/femsle/fnw094. PubMed DOI

Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of Polyhydroxyalkanoates in Stress Resistance of Microbial Cells: Biotechnological Consequences and Applications. Biotechnol. Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI

Meixner K., Fritz I., Daffert C., Markl K., Fuchs W., Drosg B. Processing Recommendations for Using Low-Solids Digestate as Nutrient Solution for Poly-ß-Hydroxybutyrate Production with Synechocystis Salina. J. Biotechnol. 2016;240:61–67. doi: 10.1016/j.jbiotec.2016.10.023. PubMed DOI

Forchhammer K., Schwarz R. Nitrogen Chlorosis in Unicellular Cyanobacteria—A Developmental Program for Surviving Nitrogen Deprivation. Environ. Microbiol. 2019;21:1173–1184. doi: 10.1111/1462-2920.14447. PubMed DOI

Spät P., Klotz A., Rexroth S., Maček B., Forchhammer K. Chlorosis as a Developmental Program in Cyanobacteria: The Proteomic Fundament for Survival and Awakening. Mol. Cell. Proteom. 2018;17:1650–1669. doi: 10.1074/mcp.RA118.000699. PubMed DOI PMC

Silvestrini L., Drosg B. Identification of Four Polyhydroxyalkanoate Structural Genes in Synechocystis Cf. Salina PCC6909: In Silico Evidences. J. Proteom. Bioinform. 2016;9:28–37. doi: 10.4172/jpb.1000386. DOI

Wu G.F., Wu Q.Y., Shen Z.Y. Accumulation of Poly-b-Hydroxybutyrate in Cyanobacterium Synechocystis Sp. PCC6803. Bioresour. Technol. 2001;6:85–90. doi: 10.1016/S0960-8524(00)00099-7. PubMed DOI

Velmurugan R., Incharoensakdi A. Disruption of Polyhydroxybutyrate Synthesis Redirects Carbon Flow towards Glycogen Synthesis in Synechocystis Sp. PCC 6803 Overexpressing glgC/glgA. Plant Cell Physiol. 2018;59:2020–2029. doi: 10.1093/pcp/pcy121. PubMed DOI

Aguirre Von Wobeser E., Ibelings B.W., Bok J., Krasikov V., Huisman J., Matthijs H.C.P. Concerted Changes in Gene Expression and Cell Physiology of the Cyanobacterium Synechocystis Sp. Strain PCC 6803 during Transitions between Nitrogen and Light-Limited Growth. Plant Physiol. 2011;155:1445–1457. doi: 10.1104/pp.110.165837. PubMed DOI PMC

Krasikov V., Aguirre von Wobeser E., Dekker H.L., Huisman J., Matthijs H.C.P. Time-Series Resolution of Gradual Nitrogen Starvation and Its Impact on Photosynthesis in the Cyanobacterium Synechocystis PCC 6803. Physiol. Plant. 2012;145:426–439. doi: 10.1111/j.1399-3054.2012.01585.x. PubMed DOI

Muramatsu M., Hihara Y. Acclimation to High-Light Conditions in Cyanobacteria: From Gene Expression to Physiological Responses. J. Plant Res. 2012;125:11–39. doi: 10.1007/s10265-011-0454-6. PubMed DOI

Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light Scattering on PHA Granules Protects Bacterial Cells against the Harmful Effects of UV Radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI

Rollin R., Joanny J.-F., Sens P. Cell Size Scaling Laws: A Unified Theory. Biorxiv. 2022 doi: 10.1101/2022.08.01.502021. DOI

Kellogg D.R., Levin P.A. Nutrient Availability as an Arbiter of Cell Size. Trends Cell Biol. 2022;32:908–919. doi: 10.1016/j.tcb.2022.06.008. PubMed DOI PMC

Osanai T., Kuwahara A., Iijima H., Toyooka K., Sato M., Tanaka K., Ikeuchi M., Saito K., Hirai M.Y. Pleiotropic Effect of sigE over-Expression on Cell Morphology, Photosynthesis and Hydrogen Production in Synechocystis Sp. PCC 6803. Plant J. 2013;76:456–465. doi: 10.1111/tpj.12310. PubMed DOI

Doppler P., Spadiut O. The Autotrophic Biorefinery. De Gruyter; Berlin, Germany: 2021. Chapter 5 Introduction to Autotrophic Cultivation of Microalgae in Photobioreactors; pp. 113–130.

Grivalský T., Ranglová K., da Câmara Manoel J.A., Lakatos G.E., Lhotský R., Masojídek J. Development of Thin-Layer Cascades for Microalgae Cultivation: Milestones (Review) Folia Microbiol. 2019;64:603–614. doi: 10.1007/s12223-019-00739-7. PubMed DOI

Masojídek J., Prášil O. The Development of Microalgal Biotechnology in the Czech Republic. J. Ind. Microbiol. Biotechnol. 2010;37:1307–1317. doi: 10.1007/s10295-010-0802-x. PubMed DOI

Abu-Ghosh S., Fixler D., Dubinsky Z., Iluz D. Flashing Light in Microalgae Biotechnology. Bioresour. Technol. 2016;203:357–363. doi: 10.1016/j.biortech.2015.12.057. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...