A Comparison of the Effects of Continuous Illumination and Day/Night Regimes on PHB Accumulation in Synechocystis Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023050
MEYS CR
I 4082-B25
FWF Austrian Science Fund
PubMed
39063660
PubMed Central
PMC11278245
DOI
10.3390/life14070907
PII: life14070907
Knihovny.cz E-zdroje
- Klíčová slova
- PHB, Synechocystis, cell size, continuous illumination, day/night cycle, glycogen,
- Publikační typ
- časopisecké články MeSH
Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known. Synechocystis (cyanobacteria) accumulates PHB using light as energy and CO2 as carbon source. The main trigger for PHB accumulation in cyanobacteria is nitrogen and phosphorous depletion with simultaneous surplus of carbon and energy. For the above reasons, obtaining knowledge about external factors influencing PHB accumulation is of highest interest. This study compares the effect of continuous light exposure and day/night (16/8 h) cycles on selected physiology parameters of three Synechocystis strains. We show that continuous illumination at moderate light intensities leads to an increased PHB accumulation in Synechocystis salina CCALA 192 (max. 14.2% CDW - cell dry weight) compared to day/night cycles (3.7% CDW). In addition to PHB content, glycogen and cell size increased, while cell density and cell viability decreased. The results offer new approaches for further studies to gain deeper insights into the role of PHB in cyanobacteria to obtain bioplastics in a more sustainable and environmentally friendly way.
BEST Bioenergy and Sustainable Technologies GmbH Inffeldgasse 21b 8010 Graz Austria
Faculty of Science Charles University Vinicna 7 12844 Prague Czech Republic
Zobrazit více v PubMed
Drosg B., Fritz I., Gattermayr F., Silvestrini L. Photo-Autotrophic Production of Poly(Hydroxyalkanoates) in Cyanobacteria. Chem. Biochem. Eng. Q. 2015;29:145–156. doi: 10.15255/CABEQ.2014.2254. DOI
Price S., Kuzhiumparambil U., Pernice M., Ralph P.J. Cyanobacterial Polyhydroxybutyrate for Sustainable Bioplastic Production: Critical Review and Perspectives. J. Environ. Chem. Eng. 2020;8:104007. doi: 10.1016/j.jece.2020.104007. DOI
Yashavanth Y., Das M., Maiti S.K. Recent Progress and Challenges in Cyanobacterial Autotrophic Production of Polyhydroxybutyrate (PHB), a Bioplastic. J. Environ. Chem. Eng. 2021;9:105379. doi: 10.1016/j.jece.2021.105379. DOI
Carpine R., Olivieri G., Hellingwerf K.J., Pollio A., Marzocchella A. Industrial Production of Poly-β-Hydroxybutyrate from CO2: Can Cyanobacteria Meet This Challenge? Processes. 2020;8:323. doi: 10.3390/pr8030323. DOI
Fritz I., Meixner K., Neureiter M., Drosg B. Comparing Heterotrophic with Phototrophic PHA Production—Concurring or Complementing Strategies. In: Koller M., editor. The Handbook of Polyhydroxyalkanoates—Microbial Biosynthesis and Feedstocks. CRC Press; Boca Raton, FL, USA: 2021. p. 453. eBook.
Troschl C., Meixner K., Drosg B. Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years’ Working Experience Running a Pilot Plant. Bioengineering. 2017;4:26. doi: 10.3390/bioengineering4020026. PubMed DOI PMC
Lau N.-S., Matsui M., Abdullah A.A.-A. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. [(accessed on 5 March 2018)]. Available online: https://www.hindawi.com/journals/bmri/2015/754934/ PubMed PMC
Meixner K., Daffert C., Dalnodar D., Mrázová K., Hrubanová K., Krzyzanek V., Nebesarova J., Samek O., Šedrlová Z., Slaninova E., et al. Glycogen, Poly(3-Hydroxybutyrate) and Pigment Accumulation in Three Synechocystis Strains When Exposed to a Stepwise Increasing Salt Stress. J. Appl. Phycol. 2022;34:1227–1241. doi: 10.1007/s10811-022-02693-3. PubMed DOI PMC
Comer A.D., Abraham J.P., Steiner A.J., Korosh T.C., Markley A.L., Pfleger B.F. Enhancing Photosynthetic Production of Glycogen-Rich Biomass for Use as a Fermentation Feedstock. Front. Energy Res. 2020;8:93. doi: 10.3389/fenrg.2020.00093. PubMed DOI PMC
Cano M., Holland S.C., Artier J., Burnap R.L., Ghirardi M., Morgan J.A., Yu J. Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria. Cell Rep. 2018;23:667–672. doi: 10.1016/j.celrep.2018.03.083. PubMed DOI
Hauf W., Schlebusch M., Hüge J., Kopka J., Hagemann M., Forchhammer K. Metabolic Changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH Sustains Polyhydroxybutyrate Accumulation. Metabolites. 2013;3:101–118. doi: 10.3390/metabo3010101. PubMed DOI PMC
Obruca S., Sedlacek P., Slaninova E., Fritz I., Daffert C., Meixner K., Sedrlova Z., Koller M. Novel Unexpected Functions of PHA Granules. Appl. Microbiol. Biotechnol. 2020;104:4795–4810. doi: 10.1007/s00253-020-10568-1. PubMed DOI
Koch M., Doello S., Gutekunst K., Forchhammer K. PHB Is Produced from Glycogen Turn-over during Nitrogen Starvation in Synechocystis Sp. PCC 6803. Int. J. Mol. Sci. 2019;20:1942. doi: 10.3390/ijms20081942. PubMed DOI PMC
Obruca S., Sedlacek P., Koller M. The Underexplored Role of Diverse Stress Factors in Microbial Biopolymer Synthesis. Bioresour. Technol. 2021;326:124767. doi: 10.1016/j.biortech.2021.124767. PubMed DOI
Taton A., Erikson C., Yang Y., Rubin B.E., Rifkin S.A., Golden J.W., Golden S.S. The Circadian Clock and Darkness Control Natural Competence in Cyanobacteria. Nat. Commun. 2020;11:1688. doi: 10.1038/s41467-020-15384-9. PubMed DOI PMC
van Alphen P., Hellingwerf K.J. Sustained Circadian Rhythms in Continuous Light in Synechocystis Sp. PCC6803 Growing in a Well-Controlled Photobioreactor. PLoS ONE. 2015;10:e0127715. doi: 10.1371/journal.pone.0127715. PubMed DOI PMC
Calzadilla P.I., Kirilovsky D. Revisiting Cyanobacterial State Transitions. Photochem. Photobiol. Sci. 2020;19:585–603. doi: 10.1039/c9pp00451c. PubMed DOI
Nishiyama Y., Murata N. Revised Scheme for the Mechanism of Photoinhibition and Its Application to Enhance the Abiotic Stress Tolerance of the Photosynthetic Machinery. Appl. Microbiol. Biotechnol. 2014;98:8777–8796. doi: 10.1007/s00253-014-6020-0. PubMed DOI
Montgomery B.L. Light-Dependent Governance of Cell Shape Dimensions in Cyanobacteria. Front. Microbiol. 2015;6:514. doi: 10.3389/fmicb.2015.00514. PubMed DOI PMC
Koch M., Berendzen K.W., Forchhammer K. On the Role and Production of Polyhydroxybutyrate (PHB) in the Cyanobacterium Synechocystis Sp. PCC 6803. Life. 2020;10:47. doi: 10.3390/life10040047. PubMed DOI PMC
Kamravamanesh D., Pflügl S., Nischkauer W., Limbeck A., Lackner M., Herwig C. Photosynthetic Poly-β-Hydroxybutyrate Accumulation in Unicellular Cyanobacterium Synechocystis Sp. PCC 6714. AMB Express. 2017;7:143. doi: 10.1186/s13568-017-0443-9. PubMed DOI PMC
Koch M., Bruckmoser J., Scholl J., Hauf W., Rieger B., Forchhammer K. Maximizing PHB Content in Synechocystis Sp. PCC 6803: A New Metabolic Engineering Strategy Based on the Regulator PirC. Microb. Cell Factories. 2020;19:231. doi: 10.1186/s12934-020-01491-1. PubMed DOI PMC
Panda B., Jain P., Sharma L., Mallick N. Optimization of Cultural and Nutritional Conditions for Accumulation of Poly-β-Hydroxybutyrate in Synechocystis Sp. PCC 6803. Bioresour. Technol. 2006;97:1296–1301. doi: 10.1016/j.biortech.2005.05.013. PubMed DOI
Ansari S., Fatma T. Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and Characterization. PLoS ONE. 2016;11:e0158168. doi: 10.1371/journal.pone.0158168. PubMed DOI PMC
Troschl C., Meixner K., Fritz I., Leitner K., Romero A.P., Kovalcik A., Sedlacek P., Drosg B. Pilot-Scale Production of Poly-β-Hydroxybutyrate with the Cyanobacterium Synechocytis Sp. CCALA192 in a Non-Sterile Tubular Photobioreactor. Algal Res. 2018;34:116–125. doi: 10.1016/j.algal.2018.07.011. DOI
Meixner K., Daffert C., Bauer L., Drosg B., Fritz I. PHB Producing Cyanobacteria Found in the Neighborhood—Their Isolation, Purification and Performance Testing. Bioengineering. 2022;9:178. doi: 10.3390/bioengineering9040178. PubMed DOI PMC
Stanier R.Y., Deruelles J., Rippka R., Herdman M., Waterbury J.B. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology. 1979;111:1–61. doi: 10.1099/00221287-111-1-1. DOI
Karr D.B., Waters J.K., Emerich D.W. Analysis of Poly-β-Hydroxybutyrate in Rhizobium Japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection. Appl. Environ. Microbiol. 1983;46:1339–1344. doi: 10.1128/aem.46.6.1339-1344.1983. PubMed DOI PMC
Zavrel T., Sinetova M., Cervený J. Measurement of Chlorophyll a and Carotenoids Concentration in Cyanobacteria. Bio-Protocol. 2015;5:e1467. doi: 10.21769/BioProtoc.1467. DOI
Ritchie R.J. Universal Chlorophyll Equations for Estimating Chlorophylls a, b, c, and d and Total Chlorophylls in Natural Assemblages of Photosynthetic Organisms Using Acetone, Methanol, or Ethanol Solvents. Photosynthetica. 2008;46:115–126. doi: 10.1007/s11099-008-0019-7. DOI
Mravec F., Obruca S., Krzyzanek V., Sedlacek P., Hrubanova K., Samek O., Kucera D., Benesova P., Nebesarova J. Accumulation of PHA Granules in Cupriavidus Necator as Seen by Confocal Fluorescence Microscopy. FEMS Microbiol. Lett. 2016;363:fnw094. doi: 10.1093/femsle/fnw094. PubMed DOI
Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of Polyhydroxyalkanoates in Stress Resistance of Microbial Cells: Biotechnological Consequences and Applications. Biotechnol. Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI
Meixner K., Fritz I., Daffert C., Markl K., Fuchs W., Drosg B. Processing Recommendations for Using Low-Solids Digestate as Nutrient Solution for Poly-ß-Hydroxybutyrate Production with Synechocystis Salina. J. Biotechnol. 2016;240:61–67. doi: 10.1016/j.jbiotec.2016.10.023. PubMed DOI
Forchhammer K., Schwarz R. Nitrogen Chlorosis in Unicellular Cyanobacteria—A Developmental Program for Surviving Nitrogen Deprivation. Environ. Microbiol. 2019;21:1173–1184. doi: 10.1111/1462-2920.14447. PubMed DOI
Spät P., Klotz A., Rexroth S., Maček B., Forchhammer K. Chlorosis as a Developmental Program in Cyanobacteria: The Proteomic Fundament for Survival and Awakening. Mol. Cell. Proteom. 2018;17:1650–1669. doi: 10.1074/mcp.RA118.000699. PubMed DOI PMC
Silvestrini L., Drosg B. Identification of Four Polyhydroxyalkanoate Structural Genes in Synechocystis Cf. Salina PCC6909: In Silico Evidences. J. Proteom. Bioinform. 2016;9:28–37. doi: 10.4172/jpb.1000386. DOI
Wu G.F., Wu Q.Y., Shen Z.Y. Accumulation of Poly-b-Hydroxybutyrate in Cyanobacterium Synechocystis Sp. PCC6803. Bioresour. Technol. 2001;6:85–90. doi: 10.1016/S0960-8524(00)00099-7. PubMed DOI
Velmurugan R., Incharoensakdi A. Disruption of Polyhydroxybutyrate Synthesis Redirects Carbon Flow towards Glycogen Synthesis in Synechocystis Sp. PCC 6803 Overexpressing glgC/glgA. Plant Cell Physiol. 2018;59:2020–2029. doi: 10.1093/pcp/pcy121. PubMed DOI
Aguirre Von Wobeser E., Ibelings B.W., Bok J., Krasikov V., Huisman J., Matthijs H.C.P. Concerted Changes in Gene Expression and Cell Physiology of the Cyanobacterium Synechocystis Sp. Strain PCC 6803 during Transitions between Nitrogen and Light-Limited Growth. Plant Physiol. 2011;155:1445–1457. doi: 10.1104/pp.110.165837. PubMed DOI PMC
Krasikov V., Aguirre von Wobeser E., Dekker H.L., Huisman J., Matthijs H.C.P. Time-Series Resolution of Gradual Nitrogen Starvation and Its Impact on Photosynthesis in the Cyanobacterium Synechocystis PCC 6803. Physiol. Plant. 2012;145:426–439. doi: 10.1111/j.1399-3054.2012.01585.x. PubMed DOI
Muramatsu M., Hihara Y. Acclimation to High-Light Conditions in Cyanobacteria: From Gene Expression to Physiological Responses. J. Plant Res. 2012;125:11–39. doi: 10.1007/s10265-011-0454-6. PubMed DOI
Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light Scattering on PHA Granules Protects Bacterial Cells against the Harmful Effects of UV Radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI
Rollin R., Joanny J.-F., Sens P. Cell Size Scaling Laws: A Unified Theory. Biorxiv. 2022 doi: 10.1101/2022.08.01.502021. DOI
Kellogg D.R., Levin P.A. Nutrient Availability as an Arbiter of Cell Size. Trends Cell Biol. 2022;32:908–919. doi: 10.1016/j.tcb.2022.06.008. PubMed DOI PMC
Osanai T., Kuwahara A., Iijima H., Toyooka K., Sato M., Tanaka K., Ikeuchi M., Saito K., Hirai M.Y. Pleiotropic Effect of sigE over-Expression on Cell Morphology, Photosynthesis and Hydrogen Production in Synechocystis Sp. PCC 6803. Plant J. 2013;76:456–465. doi: 10.1111/tpj.12310. PubMed DOI
Doppler P., Spadiut O. The Autotrophic Biorefinery. De Gruyter; Berlin, Germany: 2021. Chapter 5 Introduction to Autotrophic Cultivation of Microalgae in Photobioreactors; pp. 113–130.
Grivalský T., Ranglová K., da Câmara Manoel J.A., Lakatos G.E., Lhotský R., Masojídek J. Development of Thin-Layer Cascades for Microalgae Cultivation: Milestones (Review) Folia Microbiol. 2019;64:603–614. doi: 10.1007/s12223-019-00739-7. PubMed DOI
Masojídek J., Prášil O. The Development of Microalgal Biotechnology in the Czech Republic. J. Ind. Microbiol. Biotechnol. 2010;37:1307–1317. doi: 10.1007/s10295-010-0802-x. PubMed DOI
Abu-Ghosh S., Fixler D., Dubinsky Z., Iluz D. Flashing Light in Microalgae Biotechnology. Bioresour. Technol. 2016;203:357–363. doi: 10.1016/j.biortech.2015.12.057. PubMed DOI