Inhibitory Effect of Selected Guaianolide and Germacranolide Sesquiterpene Lactones on Nitric Oxide Production
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
305/07/0061; 14-04329S
Czech Science Foundatin
PubMed
39064869
PubMed Central
PMC11279401
DOI
10.3390/molecules29143289
PII: molecules29143289
Knihovny.cz E-zdroje
- Klíčová slova
- 8-deoxylactucin, 8-epiisoamberboin, germacranolides, guaianolides, immune-modulatory effects,
- MeSH
- butyráty MeSH
- cytokiny metabolismus MeSH
- dinoproston metabolismus biosyntéza MeSH
- furany MeSH
- laktony * farmakologie chemie MeSH
- lipopolysacharidy farmakologie MeSH
- myši MeSH
- oxid dusnatý * metabolismus MeSH
- peritoneální makrofágy účinky léků metabolismus MeSH
- seskviterpeny germakranové * farmakologie chemie MeSH
- seskviterpeny guajanové * farmakologie chemie MeSH
- seskviterpeny farmakologie chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- butyráty MeSH
- cytokiny MeSH
- dinoproston MeSH
- furany MeSH
- germacranolide MeSH Prohlížeč
- laktony * MeSH
- lipopolysacharidy MeSH
- oxid dusnatý * MeSH
- seskviterpeny germakranové * MeSH
- seskviterpeny guajanové * MeSH
- seskviterpeny MeSH
- trilobolide MeSH Prohlížeč
Trilobolide and its analogues belong to the guaianolide type of sesquiterpene lactones, which are characteristic and widely distributed within the families Asteraceae and Apiaceae. Certain guaianolides are receiving continuously increasing attention for their promising sarco-endoplasmic reticulum Ca2+-ATPase (SERCA)-inhibitory activity. However, because of their alkylation capabilities, they are generally toxic. Therefore, the search for compounds with significant immunobiological properties but with decreased cytotoxicities suitable for use in immune-based pharmacotherapy is ongoing. Therefore, we extended our previous investigation of the immunobiological effects of trilobolide to a series of structurally related guaianolides and germacranolides. To evaluate the relationship, we tested a series of selected derivatives containing α-methyl lactone or exomethylene lactone ring. For a wider comparison, we also included some of their glycosidic derivatives. We assessed the in vitro immunobiological effects of the tested compounds on nitric oxide (NO) production, cytokine secretion, and prostaglandin E2 (PGE2) release by mouse peritoneal cells, activated primarily by lipopolysaccharide (LPS), and evaluated their viability. The inhibitory effects of the apparently most active substance, 8-deoxylactucin, seem to be the most promising.
Department of Pharmacology 2nd Faculty of Medicine Charles University 150 00 Prague Czech Republic
Institute of Experimental Medicine Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Fischer N.H., Olivier E.J., Fischer H.D. The biogenesis and chemistry of sesquiterpene lactones. Prog. Chem. Org. Nat. Prod. 1979;38:47–390.
Fischer N.H. Sesquiterpene Lactones: Biogenesis and Biomimetic Transformations. In: Towers G.H.N., Stafford H.A., editors. Biochemistry of the Mevalonic Acid Pathway to Terpenoids. Recent Advances in Phytochemistry. Volume 24. Springer; Boston, MA, USA: 1990. DOI
Picman A.K. Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 1986;14:255–281. doi: 10.1016/0305-1978(86)90101-8. DOI
Holub M., Buděšínský M. Sesquiterpene lactones of the Umbelliferae. Phytochemistry. 1986;25:2015–2026. doi: 10.1016/0031-9422(86)80060-7. DOI
Samek Z., Harmatha J. Use of structural changes for stereochemical assignments of natural α-exomethylene γ-lactones of the germacra-1(10), 4-dienolide type on the basis of allylic and vicinal couplings of bridgehead protons. Hydrogenation of endocyclic double bonds. Collect. Czech Chem. Commun. 1978;43:2779–2799. doi: 10.1135/cccc19782779. DOI
Holub M., Toman J., Herout V. The phylogenetic relationships of the Asteraceae and Apiaceae based on phytochemical characters. Biochem. Syst. Ecol. 1987;15:321–326. doi: 10.1016/0305-1978(87)90006-8. DOI
Herout V. A chemical compound as a taxonomic character. In: Bendz G., Santesson J., editors. Chemistry in Botenical Classification, Proceedings of the Nobel Symposium, Ödeshög, Sweden, 20–25 August 1973. Almquist & Wiksell; Uppsala, Sweden: 1973. pp. 55–62.
Harmatha J., Nawrot J. Comparison of the feeding deterrent activity of some sesquiterpene lactones and a lignan lactone towards selected insect storage pests. Biochem. Syst. Ecol. 1984;12:95–98. doi: 10.1016/0305-1978(84)90015-2. DOI
Nawrot J., Harmatha J., Novotny L. Insect feeding deterrent activity of bisabolangelone and of some sesquiterpenes of eremophilane type. Biochem. Syst. Ecol. 1984;12:99–101. doi: 10.1016/0305-1978(84)90016-4. DOI
Nawrot J., Bloszyk B., Harmatha J., Novotny L., Drozdz B. Action of antifeedants of plant origin on beetles infesting stored products. Acta Entomol. Bohemoslov. 1986;83:327–335.
Nawrot J., Harmatha J. Phytochemical feeding deterrents for stored product insect pests. Phytochem. Rev. 2012;11:543–566. doi: 10.1007/s11101-013-9273-9. DOI
Drew D.P., Krichau N., Reichwald K., Simonsen H.T. Guaianolides in apiaceae: Perspectives on pharmacology and biosynthesis. Phytochem. Rev. 2009;8:581–599. doi: 10.1007/s11101-009-9130-z. DOI
Christensen S.B., Andersen A., Smitt U.W. Sesquiterpenoids from Thapsia species and medicinal chemistry of the thapsigargins. Prog. Chem. Org. Nat. Prod. 1997;71:129–167. PubMed
Kmoníčková E., Melkusová P., Harmatha J., Vokáč K., Farghali H., Zídek Z. Inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPase thapsigargin stimulates production of nitric oxide and secretion of interferon-gamma. Eur. J. Pharmacol. 2008;588:85–92. doi: 10.1016/j.ejphar.2008.03.037. PubMed DOI
Kmoníčková E., Harmatha J., Vokáč K., Kostecká P., Farghali H., Zídek Z. Sesquiterpene lactone trilobolide activates production of interferon-gamma and nitric oxide. Fitoterapia. 2010;81:1213–1219. doi: 10.1016/j.fitote.2010.08.005. PubMed DOI
Harmatha J., Buděšínský M., Vokáč K., Kostecká P., Kmoníčková E., Zídek Z. Trilobolide and related sesquiterpene lactones from Laser trilobum possessing immunobiological properties. Fitoterapia. 2013;89:157–166. doi: 10.1016/j.fitote.2013.05.025. PubMed DOI
Harmatha J., Vokáč K., Buděšínský M., Zídek Z., Kmoníčková E. Immunobiological properties of sesquiterpene lactones obtained by chemically transformed structural modifications of trilobolide. Fitoterapia. 2015;107:90–99. doi: 10.1016/j.fitote.2015.10.002. PubMed DOI
Harmatha J., Buděšínský M., Jurášek M., Zimmermann T., Drašar P., Zídek Z., Kmoníčková E., Vejvodová L. Structural modification of trilobolide for upgrading its immunobiological properties and reducing its cytotoxic action. Fitoterapia. 2019;134:88–95. doi: 10.1016/j.fitote.2019.02.002. PubMed DOI
Rimpelová S., Jurášek M., Peterková L., Bejček J., Spiwok V., Majdl M., Jirásko M., Buděšínský M., Harmatha J., Kmoníčková E., et al. Archangelolide: A sesquiterpene lactone with immunobiological potential from Laserpitium archangelica. Belstein J. Org. Chem. 2019;15:1933–1944. doi: 10.3762/bjoc.15.189. PubMed DOI PMC
Harmatha J., Kmoníčková E., Zídek Z. Immunopharmacological potential of the leading chemical constituents from Leuzea carthamoides. Planta Med. 2009;75:PA5. doi: 10.1055/s-0029-1234330. DOI
Matsumoto T., Nakashima S., Nakamura S., Hattori Y., Ando T., Matsuda H. Inhibitory effects of cynaropicrin and related sesquiterpene lactones from leaves of artichoke (Cynara scolymus L.) on induction of iNOS in RAW264.7 cells and its high-affinity proteins. J. Nat. Med. 2021;75:381–392. doi: 10.1007/s11418-020-01479-6. PubMed DOI
Cho J.Y., Kim A.R., Jung J.H., Chun T., Rhee M.H., Yoo E.S. Cytotoxic and pro-apoptotic activities of cynaropicrin, a sesquiterpene lactone, on the viability of leukocyte cancer cell lines. Eur. J. Pharmacol. 2004;492:85–94. doi: 10.1016/j.ejphar.2004.03.027. PubMed DOI
Pae H.O., Jeong G.S., Kim H.S., Woo W.H., Rhew H.Y., Kim H.S., Sohn D.H., Kim Y.C., Chung H.T. Costunolide inhibits production of tumor necrosis factor-alpha and interleukin-6 by inducing heme oxygenase-1 in RAW264.7 macrophages. Inflamm. Res. 2007;56:520–526. doi: 10.1007/s00011-007-7015-4. PubMed DOI
Phan M.G., Do T.T., Nguyen T.N., Do T.V.H., Dong N.P., Vu M.T. Chemical Constituents of Eupatorium japonicum and Anti-Inflammatory, Cytotoxic, and Apoptotic Activities of Eupatoriopicrin on Cancer Stem Cells. Evid. Based Complement. Altern. Med. 2021;2021:6610347. doi: 10.1155/2021/6610347. PubMed DOI PMC
Michalak B., Piwowarski J.P., Granica S., Waltenberger B., Atanasov A.G., Khan S.Y., Breuss J.M., Uhrin P., Żyżyńska-Granica B., Stojakowska A., et al. Eupatoriopicrin Inhibits Pro-inflammatory Functions of Neutrophils via Suppression of IL-8 and TNF-alpha Production and p38 and ERK 1/2 MAP Kinases. J. Nat. Prod. 2019;82:375–385. doi: 10.1021/acs.jnatprod.8b00939. PubMed DOI
Elso O.G., Bivona A.E., Sanchez A.A., Cerny N., Fabian L., Morales C., Catalán C.A.N., Malchiodi E.L., Cazorla S.I., Sülsen V.P. Trypanocidal Activity of Four Sesquiterpene Lactones Isolated from Asteraceae Species. Molecules. 2020;25:2014. doi: 10.3390/molecules25092014. PubMed DOI PMC
Dirsch V.M., Stuppner H., Ellmerer-Müller E.P., Vollmar A.M. Structural requirements of sesquiterpene lactones to inhibit LPS-induced nitric oxide synthesis in RAW 264.7 macrophages. Bioorg. Med. Chem. 2000;8:2747–2753. doi: 10.1016/S0968-0896(00)00202-9. PubMed DOI
Jurášek M., Džubák P., Rimpelová S., Sedlák D., Konečný P., Frydrych I., Gurská S., Hajdúch M., Bogdanová K., Kolář M., et al. Trilobolide-steroid hybrids: Synthesis, cytotoxic and antimycobacterial activity. Steroids. 2017;117:97–104. doi: 10.1016/j.steroids.2016.08.011. PubMed DOI
Zídek Z., Harmatha J., Vokáč K., Kmoníčková E. Immunosuppressive effects of sesquiterpene lactones from Laser trilobum (L.) Borkh. Planta Med. 2009;75:PA10. doi: 10.1055/s-0029-1234335. DOI
Kisiel W., Jakupoic J., Huneck S. Guaianolides from Crepis crocea. Phytochemistry. 1994;35:269–270. doi: 10.1016/S0031-9422(00)90549-1. DOI
Rychlewska U., Kisiel W. Structure of the Naturally Occuring Sesquiterpene Lactone 8-epiisolipidiol. Acta Cryst. 1991;C47:129–132.
Kisiel W. NMR studies of isomeric dehydrocostuslactone derivatives and structure revision of dentatins A–C. Phytochem. Lett. 2011;4:311–314. doi: 10.1016/j.phytol.2011.06.001. DOI
Kisiel W., Michalska K. Sesquiterpenoids and phenolics from Taraxacum hondoense. Fitoterapia. 2005;76:520–524. doi: 10.1016/j.fitote.2005.04.016. PubMed DOI
Wesolowska A., Nikiforuk A., Michalska K., Kisiel W., Chojnacka-Wójcik E. Analgesic and sedative activities of lactucin and some lactucine-like guaianilides in mice. J. Ethnopharm. 2006;107:254–258. doi: 10.1016/j.jep.2006.03.003. PubMed DOI
Kisiel W., Zielinska K. Guaianolides from Cichorium intybus and structure revision of Cichorium sesquiterpene lactones. Phytochemistry. 2001;57:523–527. doi: 10.1016/S0031-9422(01)00072-3. PubMed DOI
Malarz J., Stojakowska A., Kisiel W. Sesquiterpene lactones in hairy root culture of Cichorium intibus. Z. Naturfirschung C. 2002;57:993–997. PubMed
Kisiel W., Kohlmünzer S. Ixerin F from Crepis biennis. Planta Med. 1987;53:390. doi: 10.1055/s-2006-962749. PubMed DOI
Michalska K., Kisiel W. Sesquiterpene lactones from Taraxacum obovatum. Planta Med. 2003;69:181–183. doi: 10.1055/s-2003-37702. PubMed DOI
Kisiel W., Barszcz B. Sesquiterpene lactone glycosides from Crepis pyrenaica. Phytochemistry. 1995;39:1395–1397. doi: 10.1016/0031-9422(95)00129-U. DOI
Kisiel W., Barszcz B. Further sesquiterpenoids and phenolics from Taraxacum officinale. Fitoterapia. 2000;71:269–273. doi: 10.1016/S0367-326X(99)00158-6. PubMed DOI
Cis J., Nowak G., Kisiel W. Antifeedant properties and chemotaxonomic implications of sesquiterpene lactones and syringin from Rhaponticum pulchrum. Biochem. Syst. Ecol. 2006;34:862–867. doi: 10.1016/j.bse.2006.05.019. DOI
Malarz J., Stojakowska A., Dohnal B., Kisiel W. Helenalin acetate in in vitro propagated plants of Arnica montana. Planta Med. 1993;59:51–53. doi: 10.1055/s-2006-959603. PubMed DOI
Drozdz B., Grabarczyk H., Samek Z., Holub M., Herout V., Šorm F. Sesquiterpenic lactones from Eupatorium cannabinum L. Revision of the structure of eupatoriopicrin. Collect. Czech Chem. Commun. 1972;37:1546–1554. doi: 10.1135/cccc19721546. DOI
Harmatha J., Samek Z. Diethylamine addition to natural sesquiterpenic α-exomethylene-γ-lactones and its use for chemical transformations of these compounds. Collect. Czech Chem. Commun. 1982;47:2779–2785. doi: 10.1135/cccc19822779. DOI
Buděšínský M., Šaman D., Nowak G., Drozdz H.M. 9α-Hydroxyparthenolide from Zoegea baldschuanica C. WINKL., and its absolute configuration. Collect. Czech Chem. Commun. 1984;49:637–641. doi: 10.1135/cccc19840637. DOI
Holub M., Buděšínský M., Smítalová Z., Šaman D., Rychlewska U. Structure of laserolide and isolaserolide: Revision of constitution and determination of relative and absolute configuration. Collect. Czech Chem. Commun. 1985;50:1878–1887. doi: 10.1135/cccc19851878. DOI
Valente A.H., de Roode M., Ernst M., Peña-Espinoza M., Bornancin L., Bonde C.S., Martínez-Valladares M., Ramünke S., Krücken J., Simonsen H.T., et al. Identification of compounds responsible for the anthelmintic effects of chicory (Cichorium intybus) by molecular networking and bio-guided fractionation. Int. J. Parasitol. Drugs Drug Resist. 2021;15:105–114. doi: 10.1016/j.ijpddr.2021.02.002. PubMed DOI PMC
Ripoll C., Schmidt B.M., Ilic N., Poulev A., Dey M., Kurmukov A.G., Raskin I. Anti-inflammatory Effects of a Sesquiterpene Lactone Extract from Chicory (Cichorium intybus L.) Roots. [(accessed on 14 February 2024)];Nat. Prod. Commun. 2007 2:717–722. doi: 10.1177/1934578X0700200702. Available online: https://journals.sagepub.com/doi/abs/10.1177/1934578X0700200702. DOI
Cankar K., Hakkert J.C., Sevenier R., Papastolopoulou C., Schipper B., Baixinho J.P., Fernández N., Matos M.S., Serra A.T., Santos C.N., et al. Lactucin Synthase Inactivation Boosts the Accumulation of Anti-inflammatory 8-Deoxylactucin and Its Derivatives in Chicory (Cichorium intybus L.) J. Agric. Food Chem. 2023;71:6061–6072. doi: 10.1021/acs.jafc.2c08959. PubMed DOI PMC
Wu X.D., Ding L.F., Tu W.C., Yang H., Su J., Peng L.Y., Li Y., Zhao Q.S. Bioactive sesquiterpenoids from the flowers of Inula japonica. Phytochemistry. 2016;129:68–76. doi: 10.1016/j.phytochem.2016.07.008. PubMed DOI
Lee J., Tae N., Lee J.J., Kim T., Lee J.H. Eupatolide inhibits lipopolysaccharide-induced COX-2 and iNOS expression in RAW264.7 cells by inducing proteasomal degradation of TRAF6. Eur. J. Pharmacol. 2010;636:173–180. doi: 10.1016/j.ejphar.2010.03.021. PubMed DOI
Jin H.Z., Lee D., Lee J.H., Lee K., Hong Y.S., Choung D.H., Kim Y.H., Lee J.J. New sesquiterpene dimers from Inula britannica inhibit NF-kappaB activation and NO and TNF-alpha production in LPS-stimulated RAW264.7 cells. Planta Med. 2006;72:40–45. doi: 10.1055/s-2005-873189. PubMed DOI
Zhu S., Sun P., Bennett S., Charlesworth O., Tan R., Peng X., Gu Q., Kujan O., Xu J. The therapeutic effect and mechanism of parthenolide in skeletal disease, cancers, and cytokine storm. Front. Pharmacol. 2023;14:491. doi: 10.3389/fphar.2023.1111218. PubMed DOI PMC
Cavin C., Delannoy M., Malnoe A., Debefve E., Touáché A., Courtois D., Schilter B. Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochem. Biophys. Res. Commun. 2005;327:742–749. doi: 10.1016/j.bbrc.2004.12.061. PubMed DOI
Baixinho J.P., Anastácio J.D., Ivasiv V., Cankar K., Bosch D., Menezes R., de Roode M., Santos C.N.D., Matias A.A., Fernández N. Supercritical CO2 Extraction as a Tool to Isolate Anti-Inflammatory Sesquiterpene Lactones from Cichorium intybus L. Roots. Molecules. 2021;26:2583. doi: 10.3390/molecules26092583. PubMed DOI PMC
Schmidt T.J. Toxic activities of sesquiterpene lactones: Structural and biochemical aspects. Curr. Org. Chem. 1999;3:577–608.