Archangelolide: A sesquiterpene lactone with immunobiological potential from Laserpitium archangelica
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31501660
PubMed Central
PMC6720059
DOI
10.3762/bjoc.15.189
Knihovny.cz E-zdroje
- Klíčová slova
- anti-inflammatory properties, archangelolide, dansyl fluorescent conjugate, sarco/endoplasmic reticulum calcium ATPase, sesquiterpene lactone, trilobolide analogue,
- Publikační typ
- časopisecké články MeSH
Sesquiterpene lactones are secondary plant metabolites with sundry biological effects. In plants, they are synthesized, among others, for pesticidal and antimicrobial effects. Two such compounds, archangelolide and trilobolide of the guaianolide type, are structurally similar to the well-known and clinically tested lactone thapsigargin. While trilobolide has already been studied by us and others, there are only scarce reports on the biological activity of archangelolide. Here we present the preparation of its fluorescent derivative based on a dansyl moiety using azide-alkyne Huisgen cycloaddition having obtained the two sesquiterpene lactones from the seeds of Laserpitium archangelica Wulfen using supercritical CO2 extraction. We show that dansyl-archangelolide localizes in the endoplasmic reticulum of living cells similarly to trilobolide; localization in mitochondria was also detected. This led us to a more detailed study of the anticancer potential of archangelolide. Interestingly, we found that neither archangelolide nor its dansyl conjugate did exhibit cytotoxic effects in contrast to the structurally closely related counterparts trilobolide and thapsigargin. We explain this observation by a molecular dynamics simulation, in which, in contrast to trilobolide, archangelolide did not bind into the sarco/endoplasmic reticular calcium ATPase cavity utilized by thapsigargin. Last, but not least, archangelolide exhibited anti-inflammatory activity, which makes it promising compound for medicinal purposes.
Zobrazit více v PubMed
Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Int J Mol Sci. 2013;14:12780–12805. doi: 10.3390/ijms140612780. PubMed DOI PMC
Peterková L, Rimpelová S, Kmoníčková E, Ruml T. Chem Listy. 2019;113:149–155.
Wootton L L, Michelangeli F. J Biol Chem. 2006;281:6970–6976. doi: 10.1074/jbc.m510978200. PubMed DOI
Sagara Y, Fernandez-Belda F, de Meis L, Inesi G. J Biol Chem. 1992;267:12606–12613. PubMed
Quynh Doan N, Christensen S. Curr Pharm Des. 2015;21(38):5501–5517. doi: 10.2174/1381612821666151002112824. PubMed DOI
Mahalingam D, Peguero J, Cen P, Arora S P, Sarantopoulos J, Rowe J, Allgood V, Tubb B, Campos L. Cancers. 2019;11:833. doi: 10.3390/cancers11060833. PubMed DOI PMC
Wictome M, Khan Y M, East J M, Lee A G. Biochem J. 1995;310:859–868. doi: 10.1042/bj3100859. PubMed DOI PMC
Jurášek M, Rimpelová S, Kmoníčková E, Drašar P, Ruml T. J Med Chem. 2014;57:7947–7954. doi: 10.1021/jm500690j. PubMed DOI
Tomanová P, Rimpelová S, Jurášek M, Buděšínský M, Vejvodová L, Ruml T, Kmoníčková E, Drašar P B. Steroids. 2015;97:8–12. doi: 10.1016/j.steroids.2014.08.024. PubMed DOI
Jurášek M, Džubák P, Rimpelová S, Sedlák D, Konečný P, Frydrych I, Gurská S, Hajdúch M, Bogdanová K, Kolář M, et al. Steroids. 2017;117:97–104. doi: 10.1016/j.steroids.2016.08.011. PubMed DOI
Harmatha J, Buděšínský M, Jurášek M, Zimmermann T, Drašar P, Zídek Z, Kmoníčková E, Vejvodová L. Fitoterapia. 2019;134:88–95. doi: 10.1016/j.fitote.2019.02.002. PubMed DOI
Harmatha J, Buděšínský M, Vokáč K, Kostecká P, Kmoníčková E, Zídek Z. Fitoterapia. 2013;89:157–166. doi: 10.1016/j.fitote.2013.05.025. PubMed DOI
Holub M, Samek Z. Collect Czech Chem Commun. 1973;38:731–738. doi: 10.1135/cccc19730731. DOI
Smítalová Z, Buděšínský M, Šaman D, Holub M. Collect Czech Chem Commun. 1986;51:1323–1339. doi: 10.1135/cccc19861323. DOI
Wulff J E, Siegrist R, Myers A G. J Am Chem Soc. 2007;129:14444–14451. doi: 10.1021/ja075327f. PubMed DOI PMC
Liu Y, Lok C-N, Ko B C-B, Shum T Y-T, Wong M-K, Che C-M. Org Lett. 2010;12:1420–1423. doi: 10.1021/ol902890j. PubMed DOI
Kim M, Kleckley T S, Wiemer A J, Holstein S A, Hohl R J, Wiemer D F. J Org Chem. 2004;69(24):8186–8193. doi: 10.1021/jo049101w. PubMed DOI
Deiters A, Cropp T A, Mukherji M, Chin J W, Anderson J C, Schultz P G. J Am Chem Soc. 2003;125:11782–11783. doi: 10.1021/ja0370037. PubMed DOI
Hein J E, Tripp J C, Krasnova L B, Sharpless K B, Fokin V V. Angew Chem, Int Ed. 2009;48:8018–8021. doi: 10.1002/anie.200903558. PubMed DOI PMC
Rimpelová S, Bříza T, Králová J, Záruba K, Kejík Z, Císařová I, Martásek P, Ruml T, Král V. Bioconjugate Chem. 2013;24:1445–1454. doi: 10.1021/bc400291f. PubMed DOI
Paula S, Ball W J., Jr Proteins: Struct, Funct, Bioinf. 2004;56(3):595–606. doi: 10.1002/prot.20105. PubMed DOI
Winther A-M L, Liu H, Sonntag Y, Olesen C, le Maire M, Soehoel H, Olsen C-E, Christensen S B, Nissen P, Møller J V. J Biol Chem. 2010;285(37):28883–28892. doi: 10.1074/jbc.m110.136242. PubMed DOI PMC
Furuya Y, Lundmo P, Short A D, Gill D L, Isaacs J T. Cancer Res. 1994;54:6167–6175. PubMed
Muangphrom P, Seki H, Fukushima E O, Muranaka T. J Nat Med. 2016;70(3):318–334. doi: 10.1007/s11418-016-1008-y. PubMed DOI PMC
Andersen T, López C, Manczak T, Martinez K, Simonsen H. Molecules. 2015;20(4):6113–6127. doi: 10.3390/molecules20046113. PubMed DOI PMC
Dirsch V M, Stuppner H, Ellmerer-Müller E P, Vollmar A M. Bioorg Med Chem. 2000;8:2747–2753. doi: 10.1016/s0968-0896(00)00202-9. PubMed DOI
Coricello A, Adams J D, Lien E, Nguyen C, Perri F, Williams T J, Aiello F. Curr Med Chem. 2018 doi: 10.2174/0929867325666180719111123. PubMed DOI
Kmoníčková E, Melkusová P, Harmatha J, Vokáč K, Farghali H, Zídek Z. Eur J Pharmacol. 2008;588:85–92. doi: 10.1016/j.ejphar.2008.03.037. PubMed DOI
Kmoníčková E, Harmatha J, Vokáč K, Kostecká P, Farghali H, Zídek Z. Fitoterapia. 2010;81:1213–1219. doi: 10.1016/j.fitote.2010.08.005. PubMed DOI
PEGylated Purpurin 18 with Improved Solubility: Potent Compounds for Photodynamic Therapy of Cancer