PEGylated Purpurin 18 with Improved Solubility: Potent Compounds for Photodynamic Therapy of Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1220, LO1601, LM2015063
The Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16_013/0001799
CZ.02.1.01/0.0/0.0/16_013/0001799
OP VVV [2.16/3.1.00/24503]
OP VVV [2.16/3.1.00/24503]
No 21-SVV/2019
Specific university research MSMT
Martina Roeselová foundation
Martina Roeselová foundation
L'Oréal -UNESCO for Women in Science 2019
L'Oréal -UNESCO for Women in Science 2019
PubMed
31817655
PubMed Central
PMC6943672
DOI
10.3390/molecules24244477
PII: molecules24244477
Knihovny.cz E-zdroje
- Klíčová slova
- PEGylated purpurin 18, apoptosis, cancer cells, cytotoxicity, flow cytometry, live-cell fluorescence microscopy, photodynamic therapy, photosensitizer, phototoxicity, singlet oxygen,
- MeSH
- fluorescenční mikroskopie MeSH
- fotochemoterapie metody MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- porfyriny chemie MeSH
- průtoková cytometrie MeSH
- rozpustnost MeSH
- singletový kyslík chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- porfyriny MeSH
- purpurin 18 MeSH Prohlížeč
- singletový kyslík MeSH
Purpurin 18 derivatives with a polyethylene glycol (PEG) linker were synthesized as novel photosensitizers (PSs) with the goal of using them in photodynamic therapy (PDT) for cancer. These compounds, derived from a second-generation PS, exhibit absorption at long wavelengths; considerable singlet oxygen generation and, in contrast to purpurin 18, have higher hydrophilicity due to decreased logP. Together, these properties make them potentially ideal PSs. To verify this, we screened the developed compounds for cell uptake, intracellular localization, antitumor activity and induced cell death type. All of the tested compounds were taken up into cancer cells of various origin and localized in organelles known to be important PDT targets, specifically, mitochondria and the endoplasmic reticulum. The incorporation of a zinc ion and PEGylation significantly enhanced the photosensitizing efficacy, decreasing IC50 (half maximal inhibitory compound concentration) in HeLa cells by up to 170 times compared with the parental purpurin 18. At effective PDT concentrations, the predominant type of induced cell death was apoptosis. Overall, our results show that the PEGylated derivatives presented have significant potential as novel PSs with substantially augmented phototoxicity for application in the PDT of cervical, prostate, pancreatic and breast cancer.
Zobrazit více v PubMed
Lim S.H., Yam M.L., Lam M.L., Kamarulzaman F.A., Samat N., Kiew L.V., Chung L.Y., Lee H.B. Photodynamic characterization of amino acid conjugated 15(1)-hydroxypurpurin-7-lactone for cancer treatment. Mol. Pharm. 2014;11:3164–3173. doi: 10.1021/mp500351s. PubMed DOI
Bible K.C., Buytendorp M., Zierath P.D., Rinehart K.L. Tunichlorin: A nickel chlorin isolated from the caribbean tunicate Trididemnum solidum. Proc. Natl. Acad. Sci. USA. 1988;85:4582–4586. doi: 10.1073/pnas.85.13.4582. PubMed DOI PMC
Tang P.M., Chan J.Y., Au S.W., Kong S.K., Tsui S.K., Waye M.M., Mak T.C., Fong W.P., Fung K.P. Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol. Ther. 2006;5:1111–1116. doi: 10.4161/cbt.5.9.2950. PubMed DOI
Juzeniene A. Chlorin e6-based photosensitizers for photodynamic therapy and photodiagnosis. Photodiagnosis Photodyn. Ther. 2009;6:94–96. doi: 10.1016/j.pdpdt.2009.06.001. PubMed DOI
Pavlíčková V., Jurášek M., Rimpelová S., Záruba K., Sedlák D., Šimková M., Kodr D., Staňková E., Fähnrich J., Rottnerová Z., et al. Oxime-based 19-nortestosterone–pheophorbide a conjugate: Bimodal controlled release concept for PDT. J. Mater. Chem. B. 2019;7:5465–5477. doi: 10.1039/C9TB01301F. PubMed DOI
Darmostuk M., Jurášek M., Lengyel K., Zelenka J., Rumlová M., Drašar P., Ruml T. Conjugation of chlorins with spermine enhances phototoxicity to cancer cells in vitro. J. Photochem. Photobiol. B. 2017;168:175–184. doi: 10.1016/j.jphotobiol.2017.02.012. PubMed DOI
Kwon J.-G., Song I.-S., Kim M.-S., Lee B.H., Kim J.H., Yoon I., Shim Y.K., Kim N., Han J., Youm J.B. Pu-18-N-butylimide-NMGA-GNP conjugate is effective against hepatocellular carcinoma. Integr. Med. Res. 2013;2:106–111. doi: 10.1016/j.imr.2013.05.001. PubMed DOI PMC
Stefano A.D., Ettorre A., Sbrana S., Giovani C., Neri P. Purpurin-18 in combination with light leads to apoptosis or necrosis in HL60 leukemia cells. Photochem. Photobiol. 2001;73:290–296. doi: 10.1562/0031-8655(2001)073<0290:PICWLL>2.0.CO;2. PubMed DOI
Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC
Banfi S., Caruso E., Caprioli S., Mazzagatti L., Canti G., Ravizza R., Gariboldi M., Monti E. Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Bioorganic Med. Chem. 2004;12:4853–4860. doi: 10.1016/j.bmc.2004.07.011. PubMed DOI
Lee S.-J.H., Jagerovic N., Smith K.M. Use of the chlorophyll derivative, purpurin-18, for syntheses of sensitizers for use in photodynamic therapy. J. Chem. Soc. 1993;19:2369–2377. doi: 10.1039/p19930002369. DOI
Robertson C.A., Evans D.H., Abrahamse H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B. 2009;96:1–8. doi: 10.1016/j.jphotobiol.2009.04.001. PubMed DOI
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: Part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther. 2005;2:91–106. doi: 10.1016/S1572-1000(05)00060-8. PubMed DOI PMC
Krosl G., Korbelik M., Dougherty G.J. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br. J. Cancer. 1995;71:549–555. doi: 10.1038/bjc.1995.108. PubMed DOI PMC
St. Denis T.G., Aziz K., Waheed A.A., Huang Y.-Y., Sharma S.K., Mroz P., Hamblin M.R. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochem. Photobiol. Sci. 2011;10:792–801. doi: 10.1039/c0pp00326c. PubMed DOI PMC
Taniguchi M., Ptaszek M., McDowell B.E., Lindsey J.S. Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 2: Derivatization. Tetrahedron. 2007;63:3840–3849. doi: 10.1016/j.tet.2007.02.076. PubMed DOI PMC
Kimani S., Ghosh G., Ghogare A., Rudshteyn B., Bartusik D., Hasan T., Greer A. Synthesis and characterization of mono-, di-, and tri-poly(ethylene glycol) chlorin e(6) conjugates for the photokilling of human ovarian cancer cells. J. Org. Chem. 2012;77:10638–10647. doi: 10.1021/jo301889s. PubMed DOI PMC
Rapozzi V., Zorzet S., Zacchigna M., Drioli S., Xodo L.E. The PDT activity of free and pegylated pheophorbide a against an amelanotic melanoma transplanted in C57/BL6 mice. Investig. New Drugs. 2013;31:192–199. doi: 10.1007/s10637-012-9844-4. PubMed DOI
Hamblin M.R., Miller J.L., Rizvi I., Ortel B., Maytin E.V., Hasan T. Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res. 2001;61:7155–7162. PubMed
Rapozzi V., Zacchigna M., Biffi S., Garrovo C., Cateni F., Stebel M., Zorzet S., Bonora G.M., Drioli S., Xodo L.E. Conjugated PDT drug photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol. Ther. 2010;10:471–482. doi: 10.4161/cbt.10.5.12536. PubMed DOI
Srivatsan A., Ethirajan M., Pandey S.K., Dubey S., Zheng X., Liu T.-H., Shibata M., Missert J., Morgan J., Pandey R.K. Conjugation of cRGD peptide to chlorophyll a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy. Mol. Pharm. 2011;8:1186–1197. doi: 10.1021/mp200018y. PubMed DOI PMC
Thomas N., Bechet D., Becuwe P., Tirand L., Vanderesse R., Frochot C., Guillemin F., Barberi-Heyob M. Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. J. Photochem. Photobiol. B. 2009;96:101–108. doi: 10.1016/j.jphotobiol.2009.04.008. PubMed DOI
Tirand L., Frochot C., Vanderesse R., Thomas N., Trinquet E., Pinel S., Viriot M.-L., Guillemin F., Barberi-Heyob M. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J. Control. Release. 2006;111:153–164. doi: 10.1016/j.jconrel.2005.11.017. PubMed DOI
Thomas N., Tirand L., Chatelut E., Plenat F., Frochot C., Dodeller M., Guillemin F., Barberi-Heyob M. Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma-bearing nude mice. Photochem. Photobiol. Sci. 2008;7:433–441. doi: 10.1039/b718259g. PubMed DOI
Zhang X., Meng Z., Ma Z., Liu J., Han G., Ma F., Jia N., Miao Y., Zhang W., Sheng C., et al. Design and synthesis of novel water-soluble amino acid derivatives of chlorin p6 ethers as photosensitizer. Chinese Chem. Lett. 2019;30:247–249. doi: 10.1016/j.cclet.2018.04.029. DOI
Jinadasa R.G.W., Zhou Z.H., Vicente M.G.H., Smith K.M. Syntheses and cellular investigations of di-aspartate and aspartate-lysine chlorin e(6) conjugates. Org. Biomol. Chem. 2016;14:1049–1064. doi: 10.1039/C5OB02241J. PubMed DOI PMC
Meng Z., Yu B., Han G.Y., Liu M.H., Shan B., Dong G.Q., Miao Z.Y., Jia N.Y., Tan Z., Li B.H., et al. Chlorin p(6)-based water-soluble amino acid derivatives as potent photosensitizers for photodynamic therapy. J. Med. Chem. 2016;59:4999–5010. doi: 10.1021/acs.jmedchem.6b00352. PubMed DOI
Hirohara S., Oka C., Totani M., Obata M., Yuasa J., Ito H., Tamura M., Matsui H., Kakiuchi K., Kawai T., et al. Synthesis, photophysical properties, and biological evaluation of trans-bisthioglycosylated tetrakis(fluorophenyl)chlorin for photodynamic therapy. J. Med. Chem. 2015;58:8658–8670. doi: 10.1021/acs.jmedchem.5b01262. PubMed DOI
Tanaka M., Kataoka H., Mabuchi M., Sakuma S., Takahashi S., Tujii R., Akashi H., Ohi H., Yano S., Morita A., et al. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res. 2011;31:763–769. PubMed
Kato A., Kataoka H., Yano S., Hayashi K., Hayashi N., Tanaka M., Naitoh I., Ban T., Miyabe K., Kondo H., et al. Maltotriose conjugation to a chlorin derivative enhances the antitumor effects of photodynamic therapy in peritoneal dissemination of pancreatic cancer. Mol. Cancer Ther. 2017;16:1124–1132. doi: 10.1158/1535-7163.MCT-16-0670. PubMed DOI
Murakami G., Nanashima A., Nonaka T., Tominaga T., Wakata K., Sumida Y., Akashi H., Okazaki S., Kataoka H., Nagayasu T. Photodynamic therapy using novel glucose-conjugated chlorin increases apoptosis of cholangiocellular carcinoma in comparison with talaporfin sodium. Anticancer Res. 2016;36:4493–4501. doi: 10.21873/anticanres.10995. PubMed DOI
Demberelnyamba D., Ariunaa M., Shim Y.K. Newly synthesized water soluble cholinium-purpurin photosensitizers and their stabilized gold nanoparticles as promising anticancer agents. Int. J. Mol. Sci. 2008;9:864–871. doi: 10.3390/ijms9050864. PubMed DOI PMC
Zenkevich E., Sagun E., Knyukshto V., Shulga A., Mironov A., Efremova O., Bonnett R., Songca S.P., Kassem M. Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT. J. Photochem. Photobiol. B. 1996;33:171–180. doi: 10.1016/1011-1344(95)07241-1. DOI
Hoober J.K., Sery T.W., Yamamoto N. Photodynamic sensitizers from chlorophyll-purpurin-18 and chlorin-P6. Photochem. Photobiol. 1988;48:579–582. doi: 10.1111/j.1751-1097.1988.tb02867.x. PubMed DOI
Pandey S.K., Sajjad M., Chen Y., Pandey A., Missert J.R., Batt C., Yao R., Nabi H.A., Oseroff A.R., Pandey R.K. Compared to purpurinimides, the pyropheophorbide containing an iodobenzyl group showed enhanced PDT efficacy and tumor imaging (124I-PET) ability. Bioconjugate Chem. 2009;20:274–282. doi: 10.1021/bc8003638. PubMed DOI PMC
Sharma S., Dube A., Bose B., Gupta P.K. Pharmacokinetics and phototoxicity of purpurin-18 in human colon carcinoma cells using liposomes as delivery vehicles. Cancer Chemother. Pharmacol. 2006;57:500–506. doi: 10.1007/s00280-005-0072-x. PubMed DOI
Olshevskaya V.A., Savchenko A.N., Golovina G.V., Lazarev V.V., Kononova E.G., Petrovskii P.V., Kalinin V.N., Shtil’ A.A., Kuz’min V.A. New boronated derivatives of purpurin-18: Synthesis and intereaction with serum albumin. Dokl. Chem. 2010;435:328–333. doi: 10.1134/S0012500810120050. DOI
Hoebeke M., Damoiseau X. Determination of the singlet oxygen quantum yield of bacteriochlorin a: A comparative study in phosphate buffer and aqueous dispersion of dimiristoyl-l-α-phosphatidylcholine liposomes. Photochem. Photobiol. Sci. 2002;1:283–287. doi: 10.1039/b201081j. PubMed DOI
Jiang G.-Y., Lei W.-H., Zhou Q.-X., Hou Y.-J., Wang X.-S., Zhang B.-W. A new phenol red-modified porphyrin as efficient protein photocleaving agent. Phys. Chem. Chem. Phys. 2010;12:12229–12236. doi: 10.1039/c0cp00012d. PubMed DOI
Gottfried V., Peled D., Winkelman J.W., Kimel S. Photosensitizers in organized media: Singlet oxygen production and spectral properties. Photochem. Photobiol. 1988;48:157–163. doi: 10.1111/j.1751-1097.1988.tb02801.x. PubMed DOI
Redmond R.W., Gamlin J.N. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 1999;70:391–475. doi: 10.1111/j.1751-1097.1999.tb08240.x. PubMed DOI
Zhang Y., Zhang H., Wang Z., Jin Y. pH-Sensitive graphene oxide conjugate purpurin-18 methyl ester photosensitizer nanocomplex in photodynamic therapy. New J. Chem. 2018;42:13272–13284. doi: 10.1039/C8NJ00439K. DOI
Cheng J., Tan G., Li W., Li J., Wang Z., Jin Y. Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide a conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer. RSC Adv. 2016;6:37610–37620. doi: 10.1039/C6RA03128E. DOI
Bohmer R.M., Morstyn G. Uptake of hematoporphyrin derivative by normal and malignant cells: Effect of serum, pH, temperature, and cell size. Cancer Res. 1985;45:5328–5334. PubMed
Friberg E.G., Čunderlíková B., Pettersen E.O., Moan J. pH effects on the cellular uptake of four photosensitizing drugs evaluated for use in photodynamic therapy of cancer. Cancer Lett. 2003;195:73–80. doi: 10.1016/S0304-3835(03)00150-2. PubMed DOI
Sharma M., Dube A., Bansal H., Kumar Gupta P. Effect of pH on uptake and photodynamic action of chlorin p6 on human colon and breast adenocarcinoma cell lines. Photochem. Photobiol. Sci. 2004;3:231–235. doi: 10.1039/b303986m. PubMed DOI
Bříza T., Králová J., Rimpelová S., Havlík M., Kaplánek R., Kejík Z., Reddy B., Záruba K., Ruml T., Mikula I., et al. Dimethinium heteroaromatic salts as building blocks for dual-fluorescence intracellular probes. ChemPhotoChem. 2017;1:442–450. doi: 10.1002/cptc.201700061. DOI
Luo W., Liu R.S., Zhu J.G., Li Y.C., Liu H.C. Subcellular location and photodynamic therapeutic effect of chlorin e6 in the human tongue squamous cell cancer Tca8113 cell line. Oncol. Lett. 2015;9:551–556. doi: 10.3892/ol.2014.2720. PubMed DOI PMC
Huang Y.-Y., Mroz P., Zhiyentayev T., Sharma S.K., Balasubramanian T., Ruzié C., Krayer M., Fan D., Borbas K.E., Yang E., et al. In vitro photodynamic therapy and quantitative structure–activity relationship studies with stable synthetic near-infrared-absorbing bacteriochlorin photosensitizers. J. Med. Chem. 2010;53:4018–4027. doi: 10.1021/jm901908s. PubMed DOI PMC
Li Y., Yu Y., Kang L., Lu Y. Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int. J. Clin. Exp. Med. 2014;7:4867–4876. PubMed PMC
Mojzisova H., Bonneau S., Vever-Bizet C., Brault D. Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim. Biophys. Acta Biomembr. 2007;1768:2748–2756. doi: 10.1016/j.bbamem.2007.07.002. PubMed DOI
Lkhagvadulam B., Kim J.H., Yoon I., Shim Y.K. Synthesis and photodynamic activities of novel water soluble purpurin-18-N-methyl-D-glucamine photosensitizer and its gold nanoparticles conjugate. J. Porphyr. Phthalocyanines. 2012;16:331–340. doi: 10.1142/S1088424612500708. DOI
Yoon I., Sung H., Cui B., Kim J., Shim Y. Synthesis and photodynamic activities of pyrazolyl and cyclopropyl derivatives of purpurin-18 methyl ester and purpurin-18-N-butylimide: Synthesis and photodynamic activities of chlorins. Bull. Korean Chem. Soc. 2011;32:169–174. doi: 10.5012/bkcs.2011.32.1.169. DOI
Cui B.C., Yoon I., Li J.Z., Lee W.K., Shim Y.K. Synthesis and characterization of novel purpurinimides as photosensitizers for photodynamic therapy. Int. J. Mol. Sci. 2014;15:8091–8105. doi: 10.3390/ijms15058091. PubMed DOI PMC
Lin Y.-X., Wang Y., Qiao S.-L., An H.-W., Wang J., Ma Y., Wang L., Wang H. “In vivo self-assembled” nanoprobes for optimizing autophagy-mediated chemotherapy. Biomaterials. 2017;141:199–209. doi: 10.1016/j.biomaterials.2017.06.042. PubMed DOI
Klein O.J., Yuan H., Nowell N.H., Kaittanis C., Josephson L., Evans C.L. An integrin-targeted, highly diffusive construct for photodynamic therapy. Sci. Rep. 2017;7:13375. doi: 10.1038/s41598-017-13803-4. PubMed DOI PMC
Sibrian-Vazquez M., Nesterova I.V., Jensen T.J., Vicente M.G.H. Mitochondria targeting by guanidine–and biguanidine–porphyrin photosensitizers. Bioconjugate Chem. 2008;19:705–713. doi: 10.1021/bc700393u. PubMed DOI
Gryshuk A., Chen Y., Goswami L.N., Pandey S., Missert J.R., Ohulchanskyy T., Potter W., Prasad P.N., Oseroff A., Pandey R.K. Structure–activity relationship among purpurinimides and bacteriopurpurinimides: trifluoromethyl substituent enhanced the photosensitizing efficacy. J. Med. Chem. 2007;50:1754–1767. doi: 10.1021/jm061036q. PubMed DOI
Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011;61:250–281. doi: 10.3322/caac.20114. PubMed DOI PMC
Mroz P., Yaroslavsky A., Kharkwal G.B., Hamblin M.R. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011;3:2516–2539. doi: 10.3390/cancers3022516. PubMed DOI PMC
Foo J.B., Ng L.S., Lim J.H., Tan P.X., Lor Y.Z., Loo J.S.E., Low M.L., Chan L.C., Beh C.Y., Leong S.W., et al. Induction of cell cycle arrest and apoptosis by copper complex Cu(SBCM)2 towards oestrogen-receptor positive MCF-7 breast cancer cells. RSC Adv. 2019;9:18359–18370. doi: 10.1039/C9RA03130H. PubMed DOI PMC
Yan W., Ma X., Zhao X., Zhang S. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and in vitro. Drug Des. Dev. Ther. 2018;12:3961–3972. doi: 10.2147/DDDT.S181939. PubMed DOI PMC
Tsai T., Hong R.-L., Tsai J.-C., Lou P.-J., Ling I.-F., Chen C.-T. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Laser. Surg. Med. 2004;34:62–72. doi: 10.1002/lsm.10246. PubMed DOI
Chaves O.A., Amorim A.P.D.O., Castro L.H.E., Sant’Anna C.M.R., De Oliveira M.C.C., Cesarin-Sobrinho D., Netto-Ferreira J.C., Ferreira A.B.B. Fluorescence and docking studies of the interaction between human serum albumin and pheophytin. Molecules. 2015;20:19526–19539. doi: 10.3390/molecules201019526. PubMed DOI PMC
Zunszain P.A., Ghuman J., Komatsu T., Tsuchida E., Curry S. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct. Biol. 2003;3:6. doi: 10.1186/1472-6807-3-6. PubMed DOI PMC
Wardell M., Wang Z., Ho J.X., Robert J., Ruker F., Ruble J., Carter D.C. The atomic structure of human methemalbumin at 1.9 Å. Biochem. Biophys. Res. Commun. 2002;291:813–819. doi: 10.1006/bbrc.2002.6540. PubMed DOI
Akimova A., Rychkov G.N., Grin M.A., Filippova N.A., Golovina G.V., Durandin N.A., Vinogradov A.M., Kokrashvili T.A., Mironov A.F., Shtil A.A., et al. Interaction with serum albumin as a factor of the photodynamic efficacy of novel bacteriopurpurinimide derivatives. Acta Nat. 2015;7:109–116. doi: 10.32607/20758251-2015-7-1-109-116. PubMed DOI PMC
Kamal J.K., Behere D.V. Binding of heme to human serum albumin: Steady-state fluorescence, circular dichroism and optical difference spectroscopic studies. Indian J. Biochem. Biophys. 2005;42:7–12. PubMed
Ol’shevskaya V.A., Nikitina R.G., Zaitsev A.V., Luzgina V.N., Kononova E.G., Morozova T.G., Drozhzhina V.V., Ivanov O.G., Kaplan M.A., Kalinin V.N., et al. Boronated protohaemins: Synthesis and in vivo antitumour efficacy. Org. Biomol. Chem. 2006;4:3815–3821. doi: 10.1039/b607766h. PubMed DOI
Ol’shevskaya V.A., Nikitina R.G., Savchenko A.N., Malshakova M.V., Vinogradov A.M., Golovina G.V., Belykh D.V., Kutchin A.V., Kaplan M.A., Kalinin V.N., et al. Novel boronated chlorin e6-based photosensitizers: Synthesis, binding to albumin and antitumour efficacy. Bioorganic Med. Chem. 2009;17:1297–1306. doi: 10.1016/j.bmc.2008.12.016. PubMed DOI
Ol’shevskaya V.A., Savchenko A.N., Zaitsev A.V., Kononova E.G., Petrovskii P.V., Ramonova A.A., Tatarskiy V.V., Uvarov O.V., Moisenovich M.M., Kalinin V.N., et al. Novel metal complexes of boronated chlorin e6 for photodynamic therapy. J. Organomet. Chem. 2009;694:1632–1637. doi: 10.1016/j.jorganchem.2008.11.013. DOI
Pshenkina N.N. Structure of albumin and transport of drugs. Med. Acad. J. 2011;11:3–15.
Sharman W.M., van Lier J.E., Allen C.M. Targeted photodynamic therapy via receptor mediated delivery systems. Adv. Drug Deliv. Rev. 2004;56:53–76. doi: 10.1016/j.addr.2003.08.015. PubMed DOI
Tsuchida T., Zheng G., Pandey R.K., Potter W.R., Bellnier D.A., Henderson B.W., Kato H., Dougherty T.J. Correlation between site II-specific human serum albumin (HSA) binding affinity and murine in vivo photosensitizing efficacy of some photofrin components. Photochem. Photobiol. 1997;66:224–228. doi: 10.1111/j.1751-1097.1997.tb08647.x. PubMed DOI
Khodaei A., Bolandnazar S., Valizadeh H., Hasani L., Zakeri-Milani P. Interactions between sirolimus and anti-inflammatory drugs: Competitive binding for human serum albumin. Adv. Pharm. Bull. 2016;6:227–233. doi: 10.15171/apb.2016.031. PubMed DOI PMC
Yang Z., Zhou T., Cheng Y., Li M., Tan X., Xu F. Weakening impact of excessive human serum albumin (eHSA) on cisplatin and etoposide anticancer effect in C57BL/6 mice with tumor and in human NSCLC A549 cells. Front. Pharmacol. 2016;7:434. doi: 10.3389/fphar.2016.00434. PubMed DOI PMC
Liu C., Liu Z., Wang J. Uncovering the molecular and physiological processes of anticancer leads binding human serum albumin: A physical insight into drug efficacy. PLoS ONE. 2017;12:e0176208. doi: 10.1371/journal.pone.0176208. PubMed DOI PMC
Plika V., Testa B., van de Waterbeemd H. Lipophilicity in Drug Action and Toxicology. Wiley-VCH Verlag GmbH; Weinheim, Germany: 1996. Lipophilicity: The empirical tool and the fundamental objective. An introduction; pp. 1–6.
Lázníček M., Lázníčková A. The effect of lipophilicity on the protein binding and blood cell uptake of some acidic drugs. J. Pharm. Biomed. Anal. 1995;13:823–828. doi: 10.1016/0731-7085(95)01504-E. PubMed DOI
Henderson B.W., Bellnier D.A., Greco W.R., Sharma A., Pandey R.K., Vaughan L.A., Weishaupt K.R., Dougherty T.J. An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res. 1997;57:4000–4007. PubMed
Pucelik B., Paczyński R., Dubin G., Pereira M.M., Arnaut L.G., Dąbrowski J.M. Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS ONE. 2017;12:e0185984. doi: 10.1371/journal.pone.0185984. PubMed DOI PMC
Pucelik B., Gürol I., Ahsen V., Dumoulin F., Dąbrowski J.M. Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. Eur. J. Med. Chem. 2016;124:284–298. doi: 10.1016/j.ejmech.2016.08.035. PubMed DOI
Ezzeddine R., Al-Banaw A., Tovmasyan A., Craik J.D., Batinic-Haberle I., Benov L.T. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins. J. Biol. Chem. 2013;288:36579–36588. doi: 10.1074/jbc.M113.511642. PubMed DOI PMC
Velapoldi R.A., Tønnesen H.H. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J. Fluoresc. 2004;14:465–472. doi: 10.1023/B:JOFL.0000031828.96368.c1. PubMed DOI
Rimpelová S., Jurášek M., Peterková L., Bejček J., Spiwok V., Majdl M., Jirásko M., Buděšínský M., Harmatha J., Kmoníčková E., et al. Archangelolide: Sesquiterpene lactone with immunobiological potential from Laserpitium archangelica. Beilstein J. Org. Chem. 2019;15:1933–1944. doi: 10.3762/bjoc.15.189. PubMed DOI PMC
Vermes I., Haanen C., Steffens-Nakken H., Reutellingsperger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J. Immunol. Methods. 1995;184:39–51. doi: 10.1016/0022-1759(95)00072-I. PubMed DOI
Kirakci K., Zelenka J., Rumlová M., Martinčík J., Nikl M., Ruml T., Lang K. Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. J. Mater. Chem. B. 2018;6:4301–4307. doi: 10.1039/C8TB00893K. PubMed DOI
Rumlová M., Křížová I., Keprová A., Hadravová R., Doležal M., Strohalmová K., Pichová I., Hájek M., Ruml T. HIV-1 protease-induced apoptosis. Retrovirology. 2014;11:37. doi: 10.1186/1742-4690-11-37. PubMed DOI PMC
Wildman S.A., Crippen G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comp. Sci. 1999;39:868–873. doi: 10.1021/ci990307l. DOI
Daina A., Michielin O., Zoete V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014;54:3284–3301. doi: 10.1021/ci500467k. PubMed DOI
Growing Importance of Natural Products Research