PEGylated Purpurin 18 with Improved Solubility: Potent Compounds for Photodynamic Therapy of Cancer

. 2019 Dec 06 ; 24 (24) : . [epub] 20191206

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31817655

Grantová podpora
LO1220, LO1601, LM2015063 The Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16_013/0001799 CZ.02.1.01/0.0/0.0/16_013/0001799
OP VVV [2.16/3.1.00/24503] OP VVV [2.16/3.1.00/24503]
No 21-SVV/2019 Specific university research MSMT
Martina Roeselová foundation Martina Roeselová foundation
L'Oréal -UNESCO for Women in Science 2019 L'Oréal -UNESCO for Women in Science 2019

Purpurin 18 derivatives with a polyethylene glycol (PEG) linker were synthesized as novel photosensitizers (PSs) with the goal of using them in photodynamic therapy (PDT) for cancer. These compounds, derived from a second-generation PS, exhibit absorption at long wavelengths; considerable singlet oxygen generation and, in contrast to purpurin 18, have higher hydrophilicity due to decreased logP. Together, these properties make them potentially ideal PSs. To verify this, we screened the developed compounds for cell uptake, intracellular localization, antitumor activity and induced cell death type. All of the tested compounds were taken up into cancer cells of various origin and localized in organelles known to be important PDT targets, specifically, mitochondria and the endoplasmic reticulum. The incorporation of a zinc ion and PEGylation significantly enhanced the photosensitizing efficacy, decreasing IC50 (half maximal inhibitory compound concentration) in HeLa cells by up to 170 times compared with the parental purpurin 18. At effective PDT concentrations, the predominant type of induced cell death was apoptosis. Overall, our results show that the PEGylated derivatives presented have significant potential as novel PSs with substantially augmented phototoxicity for application in the PDT of cervical, prostate, pancreatic and breast cancer.

Zobrazit více v PubMed

Lim S.H., Yam M.L., Lam M.L., Kamarulzaman F.A., Samat N., Kiew L.V., Chung L.Y., Lee H.B. Photodynamic characterization of amino acid conjugated 15(1)-hydroxypurpurin-7-lactone for cancer treatment. Mol. Pharm. 2014;11:3164–3173. doi: 10.1021/mp500351s. PubMed DOI

Bible K.C., Buytendorp M., Zierath P.D., Rinehart K.L. Tunichlorin: A nickel chlorin isolated from the caribbean tunicate Trididemnum solidum. Proc. Natl. Acad. Sci. USA. 1988;85:4582–4586. doi: 10.1073/pnas.85.13.4582. PubMed DOI PMC

Tang P.M., Chan J.Y., Au S.W., Kong S.K., Tsui S.K., Waye M.M., Mak T.C., Fong W.P., Fung K.P. Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol. Ther. 2006;5:1111–1116. doi: 10.4161/cbt.5.9.2950. PubMed DOI

Juzeniene A. Chlorin e6-based photosensitizers for photodynamic therapy and photodiagnosis. Photodiagnosis Photodyn. Ther. 2009;6:94–96. doi: 10.1016/j.pdpdt.2009.06.001. PubMed DOI

Pavlíčková V., Jurášek M., Rimpelová S., Záruba K., Sedlák D., Šimková M., Kodr D., Staňková E., Fähnrich J., Rottnerová Z., et al. Oxime-based 19-nortestosterone–pheophorbide a conjugate: Bimodal controlled release concept for PDT. J. Mater. Chem. B. 2019;7:5465–5477. doi: 10.1039/C9TB01301F. PubMed DOI

Darmostuk M., Jurášek M., Lengyel K., Zelenka J., Rumlová M., Drašar P., Ruml T. Conjugation of chlorins with spermine enhances phototoxicity to cancer cells in vitro. J. Photochem. Photobiol. B. 2017;168:175–184. doi: 10.1016/j.jphotobiol.2017.02.012. PubMed DOI

Kwon J.-G., Song I.-S., Kim M.-S., Lee B.H., Kim J.H., Yoon I., Shim Y.K., Kim N., Han J., Youm J.B. Pu-18-N-butylimide-NMGA-GNP conjugate is effective against hepatocellular carcinoma. Integr. Med. Res. 2013;2:106–111. doi: 10.1016/j.imr.2013.05.001. PubMed DOI PMC

Stefano A.D., Ettorre A., Sbrana S., Giovani C., Neri P. Purpurin-18 in combination with light leads to apoptosis or necrosis in HL60 leukemia cells. Photochem. Photobiol. 2001;73:290–296. doi: 10.1562/0031-8655(2001)073<0290:PICWLL>2.0.CO;2. PubMed DOI

Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC

Banfi S., Caruso E., Caprioli S., Mazzagatti L., Canti G., Ravizza R., Gariboldi M., Monti E. Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Bioorganic Med. Chem. 2004;12:4853–4860. doi: 10.1016/j.bmc.2004.07.011. PubMed DOI

Lee S.-J.H., Jagerovic N., Smith K.M. Use of the chlorophyll derivative, purpurin-18, for syntheses of sensitizers for use in photodynamic therapy. J. Chem. Soc. 1993;19:2369–2377. doi: 10.1039/p19930002369. DOI

Robertson C.A., Evans D.H., Abrahamse H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B. 2009;96:1–8. doi: 10.1016/j.jphotobiol.2009.04.001. PubMed DOI

Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: Part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther. 2005;2:91–106. doi: 10.1016/S1572-1000(05)00060-8. PubMed DOI PMC

Krosl G., Korbelik M., Dougherty G.J. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br. J. Cancer. 1995;71:549–555. doi: 10.1038/bjc.1995.108. PubMed DOI PMC

St. Denis T.G., Aziz K., Waheed A.A., Huang Y.-Y., Sharma S.K., Mroz P., Hamblin M.R. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochem. Photobiol. Sci. 2011;10:792–801. doi: 10.1039/c0pp00326c. PubMed DOI PMC

Taniguchi M., Ptaszek M., McDowell B.E., Lindsey J.S. Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 2: Derivatization. Tetrahedron. 2007;63:3840–3849. doi: 10.1016/j.tet.2007.02.076. PubMed DOI PMC

Kimani S., Ghosh G., Ghogare A., Rudshteyn B., Bartusik D., Hasan T., Greer A. Synthesis and characterization of mono-, di-, and tri-poly(ethylene glycol) chlorin e(6) conjugates for the photokilling of human ovarian cancer cells. J. Org. Chem. 2012;77:10638–10647. doi: 10.1021/jo301889s. PubMed DOI PMC

Rapozzi V., Zorzet S., Zacchigna M., Drioli S., Xodo L.E. The PDT activity of free and pegylated pheophorbide a against an amelanotic melanoma transplanted in C57/BL6 mice. Investig. New Drugs. 2013;31:192–199. doi: 10.1007/s10637-012-9844-4. PubMed DOI

Hamblin M.R., Miller J.L., Rizvi I., Ortel B., Maytin E.V., Hasan T. Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res. 2001;61:7155–7162. PubMed

Rapozzi V., Zacchigna M., Biffi S., Garrovo C., Cateni F., Stebel M., Zorzet S., Bonora G.M., Drioli S., Xodo L.E. Conjugated PDT drug photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol. Ther. 2010;10:471–482. doi: 10.4161/cbt.10.5.12536. PubMed DOI

Srivatsan A., Ethirajan M., Pandey S.K., Dubey S., Zheng X., Liu T.-H., Shibata M., Missert J., Morgan J., Pandey R.K. Conjugation of cRGD peptide to chlorophyll a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy. Mol. Pharm. 2011;8:1186–1197. doi: 10.1021/mp200018y. PubMed DOI PMC

Thomas N., Bechet D., Becuwe P., Tirand L., Vanderesse R., Frochot C., Guillemin F., Barberi-Heyob M. Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. J. Photochem. Photobiol. B. 2009;96:101–108. doi: 10.1016/j.jphotobiol.2009.04.008. PubMed DOI

Tirand L., Frochot C., Vanderesse R., Thomas N., Trinquet E., Pinel S., Viriot M.-L., Guillemin F., Barberi-Heyob M. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J. Control. Release. 2006;111:153–164. doi: 10.1016/j.jconrel.2005.11.017. PubMed DOI

Thomas N., Tirand L., Chatelut E., Plenat F., Frochot C., Dodeller M., Guillemin F., Barberi-Heyob M. Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma-bearing nude mice. Photochem. Photobiol. Sci. 2008;7:433–441. doi: 10.1039/b718259g. PubMed DOI

Zhang X., Meng Z., Ma Z., Liu J., Han G., Ma F., Jia N., Miao Y., Zhang W., Sheng C., et al. Design and synthesis of novel water-soluble amino acid derivatives of chlorin p6 ethers as photosensitizer. Chinese Chem. Lett. 2019;30:247–249. doi: 10.1016/j.cclet.2018.04.029. DOI

Jinadasa R.G.W., Zhou Z.H., Vicente M.G.H., Smith K.M. Syntheses and cellular investigations of di-aspartate and aspartate-lysine chlorin e(6) conjugates. Org. Biomol. Chem. 2016;14:1049–1064. doi: 10.1039/C5OB02241J. PubMed DOI PMC

Meng Z., Yu B., Han G.Y., Liu M.H., Shan B., Dong G.Q., Miao Z.Y., Jia N.Y., Tan Z., Li B.H., et al. Chlorin p(6)-based water-soluble amino acid derivatives as potent photosensitizers for photodynamic therapy. J. Med. Chem. 2016;59:4999–5010. doi: 10.1021/acs.jmedchem.6b00352. PubMed DOI

Hirohara S., Oka C., Totani M., Obata M., Yuasa J., Ito H., Tamura M., Matsui H., Kakiuchi K., Kawai T., et al. Synthesis, photophysical properties, and biological evaluation of trans-bisthioglycosylated tetrakis(fluorophenyl)chlorin for photodynamic therapy. J. Med. Chem. 2015;58:8658–8670. doi: 10.1021/acs.jmedchem.5b01262. PubMed DOI

Tanaka M., Kataoka H., Mabuchi M., Sakuma S., Takahashi S., Tujii R., Akashi H., Ohi H., Yano S., Morita A., et al. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res. 2011;31:763–769. PubMed

Kato A., Kataoka H., Yano S., Hayashi K., Hayashi N., Tanaka M., Naitoh I., Ban T., Miyabe K., Kondo H., et al. Maltotriose conjugation to a chlorin derivative enhances the antitumor effects of photodynamic therapy in peritoneal dissemination of pancreatic cancer. Mol. Cancer Ther. 2017;16:1124–1132. doi: 10.1158/1535-7163.MCT-16-0670. PubMed DOI

Murakami G., Nanashima A., Nonaka T., Tominaga T., Wakata K., Sumida Y., Akashi H., Okazaki S., Kataoka H., Nagayasu T. Photodynamic therapy using novel glucose-conjugated chlorin increases apoptosis of cholangiocellular carcinoma in comparison with talaporfin sodium. Anticancer Res. 2016;36:4493–4501. doi: 10.21873/anticanres.10995. PubMed DOI

Demberelnyamba D., Ariunaa M., Shim Y.K. Newly synthesized water soluble cholinium-purpurin photosensitizers and their stabilized gold nanoparticles as promising anticancer agents. Int. J. Mol. Sci. 2008;9:864–871. doi: 10.3390/ijms9050864. PubMed DOI PMC

Zenkevich E., Sagun E., Knyukshto V., Shulga A., Mironov A., Efremova O., Bonnett R., Songca S.P., Kassem M. Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT. J. Photochem. Photobiol. B. 1996;33:171–180. doi: 10.1016/1011-1344(95)07241-1. DOI

Hoober J.K., Sery T.W., Yamamoto N. Photodynamic sensitizers from chlorophyll-purpurin-18 and chlorin-P6. Photochem. Photobiol. 1988;48:579–582. doi: 10.1111/j.1751-1097.1988.tb02867.x. PubMed DOI

Pandey S.K., Sajjad M., Chen Y., Pandey A., Missert J.R., Batt C., Yao R., Nabi H.A., Oseroff A.R., Pandey R.K. Compared to purpurinimides, the pyropheophorbide containing an iodobenzyl group showed enhanced PDT efficacy and tumor imaging (124I-PET) ability. Bioconjugate Chem. 2009;20:274–282. doi: 10.1021/bc8003638. PubMed DOI PMC

Sharma S., Dube A., Bose B., Gupta P.K. Pharmacokinetics and phototoxicity of purpurin-18 in human colon carcinoma cells using liposomes as delivery vehicles. Cancer Chemother. Pharmacol. 2006;57:500–506. doi: 10.1007/s00280-005-0072-x. PubMed DOI

Olshevskaya V.A., Savchenko A.N., Golovina G.V., Lazarev V.V., Kononova E.G., Petrovskii P.V., Kalinin V.N., Shtil’ A.A., Kuz’min V.A. New boronated derivatives of purpurin-18: Synthesis and intereaction with serum albumin. Dokl. Chem. 2010;435:328–333. doi: 10.1134/S0012500810120050. DOI

Hoebeke M., Damoiseau X. Determination of the singlet oxygen quantum yield of bacteriochlorin a: A comparative study in phosphate buffer and aqueous dispersion of dimiristoyl-l-α-phosphatidylcholine liposomes. Photochem. Photobiol. Sci. 2002;1:283–287. doi: 10.1039/b201081j. PubMed DOI

Jiang G.-Y., Lei W.-H., Zhou Q.-X., Hou Y.-J., Wang X.-S., Zhang B.-W. A new phenol red-modified porphyrin as efficient protein photocleaving agent. Phys. Chem. Chem. Phys. 2010;12:12229–12236. doi: 10.1039/c0cp00012d. PubMed DOI

Gottfried V., Peled D., Winkelman J.W., Kimel S. Photosensitizers in organized media: Singlet oxygen production and spectral properties. Photochem. Photobiol. 1988;48:157–163. doi: 10.1111/j.1751-1097.1988.tb02801.x. PubMed DOI

Redmond R.W., Gamlin J.N. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 1999;70:391–475. doi: 10.1111/j.1751-1097.1999.tb08240.x. PubMed DOI

Zhang Y., Zhang H., Wang Z., Jin Y. pH-Sensitive graphene oxide conjugate purpurin-18 methyl ester photosensitizer nanocomplex in photodynamic therapy. New J. Chem. 2018;42:13272–13284. doi: 10.1039/C8NJ00439K. DOI

Cheng J., Tan G., Li W., Li J., Wang Z., Jin Y. Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide a conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer. RSC Adv. 2016;6:37610–37620. doi: 10.1039/C6RA03128E. DOI

Bohmer R.M., Morstyn G. Uptake of hematoporphyrin derivative by normal and malignant cells: Effect of serum, pH, temperature, and cell size. Cancer Res. 1985;45:5328–5334. PubMed

Friberg E.G., Čunderlíková B., Pettersen E.O., Moan J. pH effects on the cellular uptake of four photosensitizing drugs evaluated for use in photodynamic therapy of cancer. Cancer Lett. 2003;195:73–80. doi: 10.1016/S0304-3835(03)00150-2. PubMed DOI

Sharma M., Dube A., Bansal H., Kumar Gupta P. Effect of pH on uptake and photodynamic action of chlorin p6 on human colon and breast adenocarcinoma cell lines. Photochem. Photobiol. Sci. 2004;3:231–235. doi: 10.1039/b303986m. PubMed DOI

Bříza T., Králová J., Rimpelová S., Havlík M., Kaplánek R., Kejík Z., Reddy B., Záruba K., Ruml T., Mikula I., et al. Dimethinium heteroaromatic salts as building blocks for dual-fluorescence intracellular probes. ChemPhotoChem. 2017;1:442–450. doi: 10.1002/cptc.201700061. DOI

Luo W., Liu R.S., Zhu J.G., Li Y.C., Liu H.C. Subcellular location and photodynamic therapeutic effect of chlorin e6 in the human tongue squamous cell cancer Tca8113 cell line. Oncol. Lett. 2015;9:551–556. doi: 10.3892/ol.2014.2720. PubMed DOI PMC

Huang Y.-Y., Mroz P., Zhiyentayev T., Sharma S.K., Balasubramanian T., Ruzié C., Krayer M., Fan D., Borbas K.E., Yang E., et al. In vitro photodynamic therapy and quantitative structure–activity relationship studies with stable synthetic near-infrared-absorbing bacteriochlorin photosensitizers. J. Med. Chem. 2010;53:4018–4027. doi: 10.1021/jm901908s. PubMed DOI PMC

Li Y., Yu Y., Kang L., Lu Y. Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int. J. Clin. Exp. Med. 2014;7:4867–4876. PubMed PMC

Mojzisova H., Bonneau S., Vever-Bizet C., Brault D. Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim. Biophys. Acta Biomembr. 2007;1768:2748–2756. doi: 10.1016/j.bbamem.2007.07.002. PubMed DOI

Lkhagvadulam B., Kim J.H., Yoon I., Shim Y.K. Synthesis and photodynamic activities of novel water soluble purpurin-18-N-methyl-D-glucamine photosensitizer and its gold nanoparticles conjugate. J. Porphyr. Phthalocyanines. 2012;16:331–340. doi: 10.1142/S1088424612500708. DOI

Yoon I., Sung H., Cui B., Kim J., Shim Y. Synthesis and photodynamic activities of pyrazolyl and cyclopropyl derivatives of purpurin-18 methyl ester and purpurin-18-N-butylimide: Synthesis and photodynamic activities of chlorins. Bull. Korean Chem. Soc. 2011;32:169–174. doi: 10.5012/bkcs.2011.32.1.169. DOI

Cui B.C., Yoon I., Li J.Z., Lee W.K., Shim Y.K. Synthesis and characterization of novel purpurinimides as photosensitizers for photodynamic therapy. Int. J. Mol. Sci. 2014;15:8091–8105. doi: 10.3390/ijms15058091. PubMed DOI PMC

Lin Y.-X., Wang Y., Qiao S.-L., An H.-W., Wang J., Ma Y., Wang L., Wang H. “In vivo self-assembled” nanoprobes for optimizing autophagy-mediated chemotherapy. Biomaterials. 2017;141:199–209. doi: 10.1016/j.biomaterials.2017.06.042. PubMed DOI

Klein O.J., Yuan H., Nowell N.H., Kaittanis C., Josephson L., Evans C.L. An integrin-targeted, highly diffusive construct for photodynamic therapy. Sci. Rep. 2017;7:13375. doi: 10.1038/s41598-017-13803-4. PubMed DOI PMC

Sibrian-Vazquez M., Nesterova I.V., Jensen T.J., Vicente M.G.H. Mitochondria targeting by guanidine–and biguanidine–porphyrin photosensitizers. Bioconjugate Chem. 2008;19:705–713. doi: 10.1021/bc700393u. PubMed DOI

Gryshuk A., Chen Y., Goswami L.N., Pandey S., Missert J.R., Ohulchanskyy T., Potter W., Prasad P.N., Oseroff A., Pandey R.K. Structure–activity relationship among purpurinimides and bacteriopurpurinimides: trifluoromethyl substituent enhanced the photosensitizing efficacy. J. Med. Chem. 2007;50:1754–1767. doi: 10.1021/jm061036q. PubMed DOI

Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011;61:250–281. doi: 10.3322/caac.20114. PubMed DOI PMC

Mroz P., Yaroslavsky A., Kharkwal G.B., Hamblin M.R. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011;3:2516–2539. doi: 10.3390/cancers3022516. PubMed DOI PMC

Foo J.B., Ng L.S., Lim J.H., Tan P.X., Lor Y.Z., Loo J.S.E., Low M.L., Chan L.C., Beh C.Y., Leong S.W., et al. Induction of cell cycle arrest and apoptosis by copper complex Cu(SBCM)2 towards oestrogen-receptor positive MCF-7 breast cancer cells. RSC Adv. 2019;9:18359–18370. doi: 10.1039/C9RA03130H. PubMed DOI PMC

Yan W., Ma X., Zhao X., Zhang S. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and in vitro. Drug Des. Dev. Ther. 2018;12:3961–3972. doi: 10.2147/DDDT.S181939. PubMed DOI PMC

Tsai T., Hong R.-L., Tsai J.-C., Lou P.-J., Ling I.-F., Chen C.-T. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Laser. Surg. Med. 2004;34:62–72. doi: 10.1002/lsm.10246. PubMed DOI

Chaves O.A., Amorim A.P.D.O., Castro L.H.E., Sant’Anna C.M.R., De Oliveira M.C.C., Cesarin-Sobrinho D., Netto-Ferreira J.C., Ferreira A.B.B. Fluorescence and docking studies of the interaction between human serum albumin and pheophytin. Molecules. 2015;20:19526–19539. doi: 10.3390/molecules201019526. PubMed DOI PMC

Zunszain P.A., Ghuman J., Komatsu T., Tsuchida E., Curry S. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct. Biol. 2003;3:6. doi: 10.1186/1472-6807-3-6. PubMed DOI PMC

Wardell M., Wang Z., Ho J.X., Robert J., Ruker F., Ruble J., Carter D.C. The atomic structure of human methemalbumin at 1.9 Å. Biochem. Biophys. Res. Commun. 2002;291:813–819. doi: 10.1006/bbrc.2002.6540. PubMed DOI

Akimova A., Rychkov G.N., Grin M.A., Filippova N.A., Golovina G.V., Durandin N.A., Vinogradov A.M., Kokrashvili T.A., Mironov A.F., Shtil A.A., et al. Interaction with serum albumin as a factor of the photodynamic efficacy of novel bacteriopurpurinimide derivatives. Acta Nat. 2015;7:109–116. doi: 10.32607/20758251-2015-7-1-109-116. PubMed DOI PMC

Kamal J.K., Behere D.V. Binding of heme to human serum albumin: Steady-state fluorescence, circular dichroism and optical difference spectroscopic studies. Indian J. Biochem. Biophys. 2005;42:7–12. PubMed

Ol’shevskaya V.A., Nikitina R.G., Zaitsev A.V., Luzgina V.N., Kononova E.G., Morozova T.G., Drozhzhina V.V., Ivanov O.G., Kaplan M.A., Kalinin V.N., et al. Boronated protohaemins: Synthesis and in vivo antitumour efficacy. Org. Biomol. Chem. 2006;4:3815–3821. doi: 10.1039/b607766h. PubMed DOI

Ol’shevskaya V.A., Nikitina R.G., Savchenko A.N., Malshakova M.V., Vinogradov A.M., Golovina G.V., Belykh D.V., Kutchin A.V., Kaplan M.A., Kalinin V.N., et al. Novel boronated chlorin e6-based photosensitizers: Synthesis, binding to albumin and antitumour efficacy. Bioorganic Med. Chem. 2009;17:1297–1306. doi: 10.1016/j.bmc.2008.12.016. PubMed DOI

Ol’shevskaya V.A., Savchenko A.N., Zaitsev A.V., Kononova E.G., Petrovskii P.V., Ramonova A.A., Tatarskiy V.V., Uvarov O.V., Moisenovich M.M., Kalinin V.N., et al. Novel metal complexes of boronated chlorin e6 for photodynamic therapy. J. Organomet. Chem. 2009;694:1632–1637. doi: 10.1016/j.jorganchem.2008.11.013. DOI

Pshenkina N.N. Structure of albumin and transport of drugs. Med. Acad. J. 2011;11:3–15.

Sharman W.M., van Lier J.E., Allen C.M. Targeted photodynamic therapy via receptor mediated delivery systems. Adv. Drug Deliv. Rev. 2004;56:53–76. doi: 10.1016/j.addr.2003.08.015. PubMed DOI

Tsuchida T., Zheng G., Pandey R.K., Potter W.R., Bellnier D.A., Henderson B.W., Kato H., Dougherty T.J. Correlation between site II-specific human serum albumin (HSA) binding affinity and murine in vivo photosensitizing efficacy of some photofrin components. Photochem. Photobiol. 1997;66:224–228. doi: 10.1111/j.1751-1097.1997.tb08647.x. PubMed DOI

Khodaei A., Bolandnazar S., Valizadeh H., Hasani L., Zakeri-Milani P. Interactions between sirolimus and anti-inflammatory drugs: Competitive binding for human serum albumin. Adv. Pharm. Bull. 2016;6:227–233. doi: 10.15171/apb.2016.031. PubMed DOI PMC

Yang Z., Zhou T., Cheng Y., Li M., Tan X., Xu F. Weakening impact of excessive human serum albumin (eHSA) on cisplatin and etoposide anticancer effect in C57BL/6 mice with tumor and in human NSCLC A549 cells. Front. Pharmacol. 2016;7:434. doi: 10.3389/fphar.2016.00434. PubMed DOI PMC

Liu C., Liu Z., Wang J. Uncovering the molecular and physiological processes of anticancer leads binding human serum albumin: A physical insight into drug efficacy. PLoS ONE. 2017;12:e0176208. doi: 10.1371/journal.pone.0176208. PubMed DOI PMC

Plika V., Testa B., van de Waterbeemd H. Lipophilicity in Drug Action and Toxicology. Wiley-VCH Verlag GmbH; Weinheim, Germany: 1996. Lipophilicity: The empirical tool and the fundamental objective. An introduction; pp. 1–6.

Lázníček M., Lázníčková A. The effect of lipophilicity on the protein binding and blood cell uptake of some acidic drugs. J. Pharm. Biomed. Anal. 1995;13:823–828. doi: 10.1016/0731-7085(95)01504-E. PubMed DOI

Henderson B.W., Bellnier D.A., Greco W.R., Sharma A., Pandey R.K., Vaughan L.A., Weishaupt K.R., Dougherty T.J. An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res. 1997;57:4000–4007. PubMed

Pucelik B., Paczyński R., Dubin G., Pereira M.M., Arnaut L.G., Dąbrowski J.M. Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS ONE. 2017;12:e0185984. doi: 10.1371/journal.pone.0185984. PubMed DOI PMC

Pucelik B., Gürol I., Ahsen V., Dumoulin F., Dąbrowski J.M. Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. Eur. J. Med. Chem. 2016;124:284–298. doi: 10.1016/j.ejmech.2016.08.035. PubMed DOI

Ezzeddine R., Al-Banaw A., Tovmasyan A., Craik J.D., Batinic-Haberle I., Benov L.T. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins. J. Biol. Chem. 2013;288:36579–36588. doi: 10.1074/jbc.M113.511642. PubMed DOI PMC

Velapoldi R.A., Tønnesen H.H. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J. Fluoresc. 2004;14:465–472. doi: 10.1023/B:JOFL.0000031828.96368.c1. PubMed DOI

Rimpelová S., Jurášek M., Peterková L., Bejček J., Spiwok V., Majdl M., Jirásko M., Buděšínský M., Harmatha J., Kmoníčková E., et al. Archangelolide: Sesquiterpene lactone with immunobiological potential from Laserpitium archangelica. Beilstein J. Org. Chem. 2019;15:1933–1944. doi: 10.3762/bjoc.15.189. PubMed DOI PMC

Vermes I., Haanen C., Steffens-Nakken H., Reutellingsperger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J. Immunol. Methods. 1995;184:39–51. doi: 10.1016/0022-1759(95)00072-I. PubMed DOI

Kirakci K., Zelenka J., Rumlová M., Martinčík J., Nikl M., Ruml T., Lang K. Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. J. Mater. Chem. B. 2018;6:4301–4307. doi: 10.1039/C8TB00893K. PubMed DOI

Rumlová M., Křížová I., Keprová A., Hadravová R., Doležal M., Strohalmová K., Pichová I., Hájek M., Ruml T. HIV-1 protease-induced apoptosis. Retrovirology. 2014;11:37. doi: 10.1186/1742-4690-11-37. PubMed DOI PMC

Wildman S.A., Crippen G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comp. Sci. 1999;39:868–873. doi: 10.1021/ci990307l. DOI

Daina A., Michielin O., Zoete V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014;54:3284–3301. doi: 10.1021/ci500467k. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Growing Importance of Natural Products Research

. 2019 Dec 18 ; 25 (1) : . [epub] 20191218

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...