How Technical Advances Changed the Concept of Antibodies
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Review, Historical Article, Research Support, Non-U.S. Gov't
Grant support
24-11861S
Grantová Agentura České Republiky
10.55776/COE3
Austrian Science Fund
PubMed
39569913
DOI
10.1111/imr.13425
Knihovny.cz E-resources
- Keywords
- antibodies, conceptual change, history of science, philosophy of science, scientific instruments, technology,
- MeSH
- Allergy and Immunology history MeSH
- History, 19th Century MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Antibodies * immunology MeSH
- Animals MeSH
- Check Tag
- History, 19th Century MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Antibodies * MeSH
Shaped by advances in scientific instrumentation and experimental techniques, the concept of antibody has undergone profound transformations throughout the history of immunology. Serological assays, separation techniques, protein fragmentation techniques, molecular biology techniques, and other methodological innovations did not only serve to produce data on the structure and function of these molecules but, by framing antibodies into a unique facet of experimental investigation, were effectively redefining and reconceptualizing these molecules for the scientific community. The characteristics and properties of antibodies observed in experimental settings were often directly extrapolated to their presumed nature in living organisms, as exemplified by the literal identification of antibodies with a gamma electrophoretic fraction in the 1930s. Stemming from parallel advances in related fields such as molecular biology and biochemistry, the introduction of novel techniques was driving shifts in the field of immunology, establishing novel frameworks of theoretical conceptualization and understanding. Technological innovation in experimental techniques continues to shape our view of these molecules, driving progress in both basic immunology and therapeutic applications.
Department of Pathology University of Cambridge Cambridge UK
Department of Philosophy University of Vienna Vienna Austria
Institute of Philosophy of the Czech Academy of Sciences Prague Czech Republic
See more in PubMed
H. Poincaré, Science and Hypothesis (London, UK: Walter Scott Publishing, 1905).
A. Jerome, Colloid Chemistry. An Introduction with Some Practical Applications (New York: D. Van Nostrand Company, 1919).
J. Hunter, A Treatise on the Blood, Inflammation, and Gun‐Shot Wounds (London, UK: George Nicol, 1794).
T. R. Lewis and D. D. Cunningham, A Report of Microscopical and Physiological Researches Into the Nature of the Agent or Agents Producing Cholera (Calcutta, India: Government Printing Office, 1874).
M. Traube and R. Gscheidlen, Über Fäulniss und den Widerstand der lebenden Organismen gegen dieselbe (Breslau: Jahresbericht der Schlesischen Gesellschaft für Vaterländische Kult, 1874), 179–182.
J. Fodor, “Die Fähigkeit des Blutes Bacterien zu vernichten,” Deutsche Medizinische Wochenschrift 13, no. 34 (1887): 745–747, https://doi.org/10.1055/S‐0029‐1197913.
A. I. Tauber and L. Chernyak, Metchnikoff and the Origins of Immunology: From Metaphor to Theory (New York: Oxford University Press, 1991).
G. Nuttall, “Experimente über die bacterienfeindlichen Einflüsse des thierischen Körpers,” Zeitschrift für Hygiene 4, no. 1 (1888): 353–394, https://doi.org/10.1007/BF02188097.
H. Buchner, “Über die bakterientötende Wirkung des zellfreien Blutserums,” Cent für Bakteriol Und Parasitenkd 5 (1889): 817–823.
E. Metchnikoff, Immunity in Infective Diseases (Cambridge, USA: Cambridge University Press, 1905).
H. Buchner and G. Sittmann, “Welchen Bestandtheilen des Blutes ist die bakterientodtende Wirkung zuzuschreiben?,” Archiv für Hygiene X (1890): 121–149.
H. Buchner and F. Voit, “Ueber den bacterientodtenden Einfluss des Blutes,” Archiv für Hygiene X (1890): 101–120.
E. J. Moticka, A Historical Perspective on Evidence‐Based Immunology (Cambridge, MA: Academic Press, 2016).
R. Pfeiffer and R.Issaeff, “Ueber die specifische Bedeutung der Choleraimmunität,” Zeitschrift für Hygiene und Infektionskrankheiten 17, no. 1 (1894): 355–400, https://doi.org/10.1007/BF02284479/.
R. Pfeiffer, “Weitere Untersuchungen über das Wesen der Choleravaccination und der Immunität gegen Cholera,” Zeitschrift für Hygiene und Infektionskrankheiten 18 (1894): 1–18.
P. Ehrlich, Collected Studies on Immunity (London, UK: Chapman & Hall, 1906).
J. Bordet, “Le Mécanisme de L'agglutination,” Annales de l'Institut Pasteur 13 (1899): 225, http://hdl.handle.net/2013/.
A. Charrin and G. H. Roger, “Note sur le développement des microbes pathogènes dans le sérum des animaux vaccinés,” Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 109 (1889): 879–881.
A. Charrin, La Maladie Pyocyanique (Paris, France: Steinhell, 1889).
M. Gruber and H. E. Durham, “Eine neue Methode zur raschen Erkennung des Choleravibrio und des Typhusbacillus,” Münchener Medizinische Wochenschrift 43 (1896): 285–286.
R. Kraus, “Über Specifische Reactionen in Keimfreien Filtraten Aus Cholera, Typhus Und Pestbouillonculturen, Erzeugt Durch Homologes Serum,” Wiener Klinische Wochenschrift 10 (1897): 736–738.
T. Tchistovitch, “Études sur l'immunisation contre le sérum d'anguilles,” Annales de l'Institut Pasteur 13 (1899): 406–425.
P. Uhlenhuth, “Eine Methode zur Unterscheidung der verschiedenen Blutarten, im besonderen zum differentialdiagnostischen Nachweise des Menschenblutes,” Deutsche Medizinische Wochenschrift 27, no. 6 (1901): 82–83.
E. von Behring and S. Kitasato, “Ueber das Zustandekommen der Diphtherie‐Immunität und der Tetanus‐Immunität bei Thieren,” Deutsche Medizinische Wochenschrift 16, no. 49 (1890): 1113–1114, https://doi.org/10.1055/S‐0029‐1207589.
E. von Behring, “Die Blutserumtherapie,” Zeitschrift für Hyg und Infekt 12 (1892): 10–44.
O. Gengou, “Sur les sensibilisatrices des drum actifs contre les substances albuminoides,” Annales de l'Institut Pasteur 16 (1902): 734–755.
A. E. Wright and S. R. Douglas, “An Experimental Investigation of the Rôle of the Blood Fluids in Connection With Phagocytosis,” Proceedings of the Royal Society of London 72, no. 477–486 (1904): 357–370, https://doi.org/10.1098/RSPL.1903.0062.
P. Ehrlich and J. Morgenroth, “Ueber Haemolysine,” Berliner Klin Wochenschrift 36 (1899): 6–9.
P. Ehrlich, “Croonian Lecture.—On Immunity With Special Reference to Cell Life,” Proceedings of the Royal Society of London 66, no. 424–433 (1900): 424–448, https://doi.org/10.1098/RSPL.1899.0121.
H. Zinsser, “On the Essential Identity of the Antibodies,” Journal of Immunology 6, no. 5 (1921): 289–299, https://doi.org/10.4049/JIMMUNOL.6.5.289.
C. B. Coulter, “The Isoelectric Point of Red Blood Cells and Its Relation to Agglutination,” Journal of General Physiology 3, no. 3 (1921): 309–323, https://doi.org/10.1085/JGP.3.3.309.
H. R. Dean, “The Relation Between the Fixation of Complement and the Formation of a Precipitate,” Proceedings of the Royal Society of Medicine 5 (1912): 62–103.
H. R. Dean, “The Horace Dobell Lecture ‘on the Mechanism of the Serum Reaction’ Delivered Before the Royal College of Physicians of London,” British Medical Journal 2, no. 2918 (1916): 749–752, https://doi.org/10.1136/BMJ.2.2918.749.
H. Zinsser, “Further Studies on the Identity of Precipins and Protein Sensitizers (Albuminolysins),” Journal of Experimental Medicine 18, no. 3 (1913): 219–227, https://doi.org/10.1084/JEM.18.3.219.
O. Bail and K. Tsuda, “Versuche über bakteriolytische immunkörper mit besonderer berücksichtigung des normalen indenserums,” Zeitschrift für Immunitätsforschung und Experimentelle Therapie 1, no. 1 (1909): 546–612.
F. P. Gay and H. T. Chickering, “Concentration of the Protective Bodies in Antipneumococcus Serum by Means of Specific Precipitation,” Journal of Experimental Medicine 21, no. 4 (1915): 389–400, https://doi.org/10.1084/JEM.21.4.389.
L. D. Felton, “The Correlation of the Protective Value With the Titers of Other Antibodies in Type I Antipneumococcus Serum,” Journal of Immunology 21, no. 5 (1931): 341–356, https://doi.org/10.4049/JIMMUNOL.21.5.341.
M. Heidelberger and E. A. Kabat, “Chemical Studies on Bacterial Agglutination: III. A Reaction Mechanism and a Quantitative Theory,” Journal of Experimental Medicine 65, no. 6 (1937): 885–902, https://doi.org/10.1084/JEM.65.6.885.
C. R. Prüll, “Part of a Scientific Master Plan? Paul Ehrlich and the Origins of His Receptor Concept,” Medical History 47, no. 3 (2003): 332–356, https://doi.org/10.1017/S0025727300057045.
W. Pauli, Physical Chemistry in the Service of Medicine (New York: John Wiley & Sons, Ltd, 1907).
L. Pauling, “A Theory of the Structure and Process of Formation of Antibodies,” Journal of the American Chemical Society 62, no. 10 (1940): 2643–2657, https://doi.org/10.1021/JA01867A018/ASSET/JA01867A018.FP.PNG_V03.
A. Tiselius, “Electrophoresis of Serum globulinElectrophoretic Analysis of Normal and Immune Sera,” Biochemical Journal 31, no. 9 (1937): 1464–1477, https://doi.org/10.1042/BJ0311464.
A. Tiselius and E. A. Kabat, “An Electrophoretic Study of Immune Sera and Purified Antibody Preparations,” Journal of Experimental Medicine 69, no. 1 (1939): 119–131, https://doi.org/10.1084/JEM.69.1.119.
H. A. N. Creager, “From Blood Fractions to Antibody Structure: Gamma Globulin Research Growing out of World War II,” in Singular Selves: Historical Issues and Contemporary Debates in Immunology, eds. A. M. Moulin and A. Cambrosio (Amsterdam: Elsevier, 2001), 140–154.
O. T. Avery, “The Distribution of the Immune Bodies Occuring in Antipneumococcus Serum,” Journal of Experimental Medicine 21, no. 2 (1915): 133–145, https://doi.org/10.1084/JEM.21.2.133.
E. J. Cohn, “The History of Plasma Fractionation,” in Advances in Military Medicine, eds. E. C. Andrus, D. W. Bronk, and G. A. Carden (Boston: Little, Brown & Co, 1948).
J. L. Oncley, M. Melin, D. A. Richert, J. W. Cameron, and P. M. Gross, “The Separation of the Antibodies, Isoagglutinins, Prothrombin, Plasminogen and β1‐Lipoprotein Into Subfractions of Human Plasma,” Journal of the American Chemical Society 71, no. 2 (1949): 541–550, https://doi.org/10.1021/JA01170A048/ASSET/JA01170A048.FP.PNG_V03.
J. F. Heremans, J. P. Vaerman, and C. Vaerman, “Studies on the Immune Globulins of Human Serum: II. A Study of the Distribution of Anti‐Brucella and Anti‐Diphtheria Antibody Activities Among γss‐, γ1M‐ and γ1A‐Globulin Fractions,” Journal of Immunology 91, no. 1 (1963): 11–17, https://doi.org/10.4049/JIMMUNOL.91.1.11.
C. A. Black, “A Brief History of the Discovery of the Immunoglobulins and the Origin of the Modern Immunoglobulin Nomenclature,” Immunology and Cell Biology 75, no. 1 (1997): 65–68, https://doi.org/10.1038/ICB.1997.10.
E. C. Franklin and H. G. Kunkel, “Immunologic Differences Between the 19 S and 7 S Components of Normal Human γ‐Globulin,” Journal of Immunology 78, no. 1 (1957): 11–18, https://doi.org/10.4049/JIMMUNOL.78.1.11.
B. D. Davis, D. H. Moore, E. A. Kabat, and A. Harris, “Electrophoretic, Ultracentrifugal, and Immunochemical Studies on Wassermann Antibody,” Journal of Immunology 50, no. 1 (1945): 1–20, https://doi.org/10.4049/JIMMUNOL.50.1.1.
J. F. Heremans, “Immunochemical Studies on Protein Pathology the Immunoglobulin Concept,” Clinica Chimica Acta 4, no. 5 (1959): 639–646, https://doi.org/10.1016/0009‐8981(59)90004‐X.
R. R. Porter, “The Hydrolysis of Rabbit γ‐Globulin and Antibodies With Crystalline Papain,” Biochemical Journal 73, no. 1 (1959): 119–127, https://doi.org/10.1042/BJ0730119.
G. M. Edelman, “Dissociation of γ‐Globulin,” Journal of the American Chemical Society 81, no. 12 (1959): 3155–3156, https://doi.org/10.1021/JA01521A071/ASSET/JA01521A071.FP.PNG_V03.
F. W. Putnam, “Growing Up in the Golden Age of Protein Chemistry,” Protein Science 2, no. 9 (1993): 1536–1542, https://doi.org/10.1002/PRO.5560020919.
F. Sanger, “Sequences, Sequences, and Sequences,” Annual Review of Biochemistry 57, no. 1 (1988): 1–29, https://doi.org/10.1146/ANNUREV.BI.57.070188.000245/CITE/REFWORKS.
A. Nisonoff, G. Markus, and F. C. Wissler, “Separation of Univalent Fragments of Rabbit Antibody by Reduction of a Single, Labile Disulphide Bond,” Nature 189, no. 4761 (1961): 293–295, https://doi.org/10.1038/189293a0.
R. J. Poljak, L. M. Amzel, H. P. Avey, B. L. Chen, R. P. Phizackerley, and F. Saul, “Three‐Dimensional Structure of the Fab' Fragment of a Human Immunoglobulin at 2.8‐Å Resolution,” Proceedings of the National Academy of Sciences 70, no. 12 (1973): 3305–3310, https://doi.org/10.1073/PNAS.70.12.3305.
D. R. Davies, E. A. Padlan, and D. M. Segal, “Three‐Dimensional Structure of Immunoglobulins,” Annual Review of Biochemistry 44 (1975): 639–667, https://doi.org/10.1146/ANNUREV.BI.44.070175.003231/CITE/REFWORKS.
F. M. Burnet, “A Modification of Jerne's Theory of Antibody Production Using the Concept of Clonal Selection,” Australian Journal of Science 20, no. 3 (1957): 67–69.
F. Haurowitz, Chemistry and Biology of Proteins (Cambridge, MA: Academic Press, 1950).
S. H. Podolsky and A. I. Tauber, The Generation of Diversity: Clonal Selection Theory and the Rise of Molecular Immunology (Cambridge, USA: Harvard University Press, 1997).
W. A. M. Loenen, D. T. F. Dryden, E. A. Raleigh, G. G. Wilson, and N. E. Murrayy, “Highlights of the DNA Cutters: A Short History of the Restriction Enzymes,” Nucleic Acids Research 42, no. 1 (2014): 3–19, https://doi.org/10.1093/NAR/GKT990.
S. Tonegawa, “Somatic Generation of Antibody Diversity,” Nature 302, no. 5909 (1983): 575–581, https://doi.org/10.1038/302575a0.
N. Hozumi and S. Tonegawa, “Evidence for Somatic Rearrangement of Immunoglobulin Genes Coding for Variable and Constant Regions,” Proceedings of the National Academy of Sciences 73, no. 10 (1976): 3628–3632, https://doi.org/10.1073/PNAS.73.10.3628.
N. J. Bernard, “When Humoral Became Cellular,” Nature Immunology 17, no. 1 (2016): S9, https://doi.org/10.1038/ni.3604.
G. Köhler and C. Milstein, “Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity,” Nature 256, no. 5517 (1975): 495–497, https://doi.org/10.1038/256495a0.
P. Nurse, “Biology Must Generate Ideas as Well as Data,” Nature 597, no. 7876 (2021): 305, https://doi.org/10.1038/D41586‐021‐02480‐Z.
H. J. Rheinberger, Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube (Redwood City, USA: Stanford University Press, 1997).
M. Morange, “Experimental Systems in the co‐Construction of Scientific Knowledge,” Berichte zur Wissenschaftsgeschichte 45, no. 3 (2022): 301–305, https://doi.org/10.1002/BEWI.202200016.
H. Chang, Inventing Temperature: Measurement and Scientific Progress (England, UK: Oxford University Press, 2004), https://doi.org/10.1093/0195171276.001.0001/ACPROF‐9780195171273.
D. Baird, Thing Knowledge: A Philosophy of Scientific Instruments (California: University of California Press, 2004).
L. E. Kay, “Laboratory Technology and Biological Knowledge: The Tiselius Electrophoresis Apparatus, 1930‐1945,” History and Philosophy of Life Sciences 10, no. 1 (1988): 51–72.
H. H. H. Chiang, “The Laboratory Technology of Discrete Molecular Separation: The Historical Development of Gel Electrophoresis and the Material Epistemology of Biomolecular Science, 1945‐1970,” Journal of the History of Biology 42, no. 3 (2009): 495–527, https://doi.org/10.1007/S10739‐008‐9169‐5/METRICS.
E. Suárez‐Díaz, “The Electrophoretic Revolution in the 1960s: Historical Epistemology Meets the Global History of Science and Technology,” Berichte zur Wissenschaftsgeschichte 45, no. 3 (2022): 332–343, https://doi.org/10.1002/BEWI.202200024.
P. Galison, “History, Philosophy, and the Central Metaphor,” Science in Context 2, no. 1 (1988): 197–212, https://doi.org/10.1017/S0269889700000557.
F. Russo, Techno‐Scientific Practices: An Informational Approach (London, UK: Rowman & Littlefield, 2022).
M. Boon, “Instruments in Science and Technology,” in A Companion to the Philosophy of Technology, eds. J. K. B. Olsen, S. A. Pedersen, and V. F. Hendricks (Hoboken, NJ: Wiley‐Blackwell, 2009), 78–83.
M. H. V. Van Regenmortel, “Reductionism and the Search for Structure–Function Relationships in Antibody Molecules,” Journal of Molecular Recognition 15, no. 5 (2002): 240–247, https://doi.org/10.1002/JMR.584.
R. Mertens, The Construction of Analogy‐Based Research Programs: The Lock‐and‐Key Analogy in 20th Century Biochemistry (Bielefeld, Germany: transcript Verlag, 2019).
W. Van Eden, R. Spiering, F. Broere, and R. Van Der Zee, “A Case of Mistaken Identity: HSPs Are no DAMPs but DAMPERs,” Cell Stress & Chaperones 17, no. 3 (2012): 281–292, https://doi.org/10.1007/S12192‐011‐0311‐5.
G. P. Greslehner, “Not by Structures Alone: Can the Immune System Recognize Microbial Functions?,” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 84 (2020): 101336, https://doi.org/10.1016/j.shpsc.2020.101336.
L. L. Lu, T. J. Suscovich, S. M. Fortune, and G. Alter, “Beyond Binding: Antibody Effector Functions in Infectious Diseases,” Nature Reviews. Immunology 18, no. 1 (2017): 46–61, https://doi.org/10.1038/nri.2017.106.
N. J. Nersessian, Creating Scientific Concepts (Cambridge, USA: MIT Press, 2008).
R. N. Giere, Scientific Perspectivism (Chicago: University of Chicago Press, 2006), https://doi.org/10.7208/chicago/9780226292144.001.0001.
A. M. Creţu, “Perspectival Instruments,” Philosophy in Science 89, no. 3 (2022): 521–541, https://doi.org/10.1017/PSA.2021.32.