Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
2022.07258.PTDC
Fundação para a Ciência e a Tecnologia
LA/P/0037/2020
Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication-i3N
UIDP/50025/2020
Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication-i3N
PTDC/CTM-COM/32606/2017
Fundação para a Ciência e Tecnologia
UIDB/50025/2020
Fundação para a Ciência e Tecnologia
- Keywords
- electrospinning, gelatin, mesenchymal stem cells, neural stem cells, poly(ester urethane urea),
- MeSH
- Biocompatible Materials chemistry pharmacology MeSH
- Cell Adhesion drug effects MeSH
- Cell Differentiation drug effects MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mesenchymal Stem Cells * cytology drug effects metabolism MeSH
- Neural Stem Cells * cytology drug effects metabolism MeSH
- Tensile Strength MeSH
- Polyesters * chemistry pharmacology MeSH
- Polyurethanes * chemistry pharmacology MeSH
- Cell Proliferation drug effects MeSH
- Materials Testing MeSH
- Tissue Engineering * methods MeSH
- Tissue Scaffolds chemistry MeSH
- Cell Survival drug effects MeSH
- Gelatin * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biocompatible Materials MeSH
- poly(ester urethane)urea MeSH Browser
- Polyesters * MeSH
- Polyurethanes * MeSH
- Gelatin * MeSH
Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).
Institute of Experimental Medicine Academy of Sciences of the Czech Republic Prague 4 Czech Republic
See more in PubMed
A. Higuchi, S. Suresh Kumar, G. Benelli, Q.‐D. Ling, H.‐F. Li, A. A. Alarfaj, M. A. Munusamy, T.‐C. Sung, Y. Chang, K. Murugan, Prog. Mater. Sci. 2019, 103, 374.
J. F. Bonner, O. Steward, Brain Res. 2015, 1619, 115.
P. Xu, X. Yang, Cell Transplant. 2019, 28, 36.
N. R. Iyer, T. S. Wilems, S. E. Sakiyama‐Elbert, Biotechnol. Bioeng. 2017, 114, 245.
E. Meco, K. J. Lampe, Front. Mat. 2018, 5, 220130045.
R. Matta, A. L. Gonzalez, Curr. Stem Cell Rep. 2019, 5, 109.
T. J. Sill, H. A. von Recum, Biomaterials 2008, 29, 1989.
S. Sankar, C. S. Sharma, S. N. Rath, S. Ramakrishna, Biotechnol. J. 2017, 12, 1700263.
B. Robb, B. Lennox, Electrospinning for Tissue Regeneration 2011, 51.
C. Henriques, R. Vidinha, D. Botequim, J. P. Borges, J. A. M. C. Silva, J. Nanosci. Nanotechnol. 2009, 9, 3535.
R. Murugan, S. Ramakrishna, Tissue Eng. 2007, 13, 1845.
C. Czeisler, A. Short, T. Nelson, P. Gygli, C. Ortiz, F. P. Catacutan, B. Stocker, J. Cronin, J. Lannutti, J. Winter, J. J. Otero, J. Comp. Neurol. 2016, 524, 3485.
R. Rajasekaran, V. S. Seesala, K. C. Sunka, P. G. Ray, B. Saha, M. Banerjee, S. Dhara, Mater. Sci. Eng. C 2020, 107, 110218.
S. H. Lim, X. Y. Liu, H. Song, K. J. Yarema, H.‐Q. Mao, Biomaterials 2010, 31, 9031.
L. Ghasemi‐Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr‐Esfahani, S. Ramakrishna, Biomaterials 2008, 29, 4532.
Š. Kubinová, E. Syková, Regener. Med. 2012, 7, 207.
D. Kai, G. Jin, M. P. Prabhakaran, S. Ramakrishna, Biotechnol. J. 2013, 8, 59.
G. Li, D. Li, Y. Niu, T. He, K. C. Chen, K. Xu, J. Biomed. Mater. Res. – Part A 2014, 102, 685.
A. J. Neumann, O. F. W. Gardner, R. Williams, M. Alini, C. W. Archer, M. J. Stoddart, PLoS One 2015, 10, e0136229.
M. Shahrousvand, G. M. M. Sadeghi, E. Shahrousvand, M. Ghollasi, A. Salimi, Colloids Surf. B 2017, 156, 292.
V. Chiono, P. Mozetic, M. Boffito, S. Sartori, E. Gioffredi, A. Silvestri, A. Rainer, S. M. Giannitelli, M. Trombetta, D. Nurzynska, F. Di Meglio, C. Castaldo, R. Miraglia, S. Montagnani, G. Ciardelli, Interface Focus 2014, 4, 20130045.
J. Kucinska‐Lipka, I. Gubanska, H. Janik, M. Sienkiewicz, Mater. Sci. Eng. C 2015, 46, 166.
T. Vieira, J. C. Silva, J. P. Borges, C. Henriques, Eur. Polym. J. 2018, 103, 271.
J. Xue, D. Pisignano, Y. Xia, Adv. Sci. 2020, 7, 2000735.
M. C. Amores de Sousa, C. A. V. Rodrigues, I. A. F. Ferreira, M. M. Diogo, R. J. Linhardt, J. M. S. Cabral, F. C. Ferreira, Front. bioeng. biotechnol. 2020, 8, 580135.
C. Ayres, G. L. Bowlin, S. C. Henderson, L. Taylor, J. Shultz, J. Alexander, T. A. Telemeco, D. G. Simpson, Biomaterials 2006, 27, 5524.
T. Vieira, J. Carvalho Silva, A. M. Botelho do Rego, J. P. Borges, C. Henriques, Mater. Sci. Eng. C 2019, 103, 109819.
K. Lee, B. Lee, C. Kim, H. Kim, K. Kim, C. Nah, Macromol. Res. 2005, 13, 441.
J. Yao, C. W. M. Bastiaansen, T. Peijs, Fibers 2014, 2, 158.
S. Bai, W. Zhang, Q. Lu, Q. Ma, D. L. Kaplan, H. Zhu, J. Mater. Chem. B. 2014, 2, 6590.
Y. Li, G. A. Thouas, Q. Chen, J. Mech. Behav. Biomed. Mater. 2014, 40, 210.
J. I. Kim, T. I. Hwang, L. E. Aguilar, C. H. Park, C. S. Kim, Sci. Rep. 2016, 6, 23761.
W. Cui, X. Li, S. Zhou, J. Weng, Polym. Degrad. Stab. 2008, 93, 731.
H. Hemeda, B. Giebel, W. Wagner, Cytotherapy. 2014, 16, 170.
X. Jiang, H. Q. Cao, L. Y. Shi, S. Y. Ng, L. W. Stanton, S. Y. Chew, Acta Biomater 2012, 8, 1290.
J. C. Chang, S. Fujita, H. Tonami, K. Kato, H. Iwata, S. H. Hsu, Biomed. Mat. (Bristol). 2013, 8, 55002.
C. Zandén, N. Hellström Erkenstam, T. Padel, J. Wittgenstein, J. Liu, H. G. Kuhn, Nanomed.: Nanotechnol. Biol. Med. 2014,10, e949.
C. A. Bashur, R. D. Shaffer, L. A. Dahlgren, S. A. Guelcher, A. S. Goldstein, Tissue Eng. Part A 2009, 15, 2435.
M. Wang, Y. Yang, D. Yang, F. Luo, W. Liang, S. Guo, J. Xu, Immunology. 2009, 126, 220.
R. Zhang, Y.i Liu, K.e Yan, L. Chen, X.‐R. Chen, P. Li, F.‐F. Chen, X.‐D. Jiang, J. Neuroinflammation 2013, 10, 871.
H. Hajiali, A. Contestabile, E. Mele, A. Athanassiou, J. Mater. Chem. B. 2018, 6, 930.
L. C. Lins, F. Wianny, S. Livi, C. Dehay, J. Duchet‐Rumeau, J. F. Gérard, J. Biomed. Mat. Res. – Part B Applied Biomat. 2017, 105, 2376.
Y. Wang, M. Yao, J. Zhou, W. Zheng, C. Zhou, D. Dong, Y. Liu, Z. Teng, Y. Jiang, G. Wei, X. Cui, Biomaterials. 2011, 32, 6737.
J. H. Zhou, F. G. Sui, M. Yao, Y. Wang, Y. Liu, F. Tian, Q. Li, X. He, L. Shao, Z. Liu, Neural Regene. Res. 2013, 8, 1455.
L. Tian, M. P. Prabhakaran, J. Hu, M. Chen, F. Besenbacher, S. Ramakrishna, RSC Adv. 2015, 5, 49838.
G. T. Christopherson, H. Song, H. Q. Mao, Biomaterials 2009, 30, 556.
V. Mahairaki, S. H. Lim, G. T. Christopherson, L. Xu, I. Nasonkin, C. Yu, H.‐Q. Mao, V. E. Koliatsos, Tissue Engineering – Part A 2011, 17, 855.
A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia, D. V. Schaffer, R. S. Kane, Biomaterials 2009, 30, 4695.
R. Yao, J. He, G. Meng, B. Jiang, F. Wu, J. Biomater. Sci. 2016, 27, 824.
C. A. Schneider, W. S. Rasband, K. W. Eliceri, Nat. Methods. 2012, 9, 671.
H. Macková, Z. Plichta, V. Proks, I. Kotelnikov, J. Kucka, H. Hlídková, D. Horák, Š. Kubinová, K. Jiráková, Macromol. Biosci. 2016, 16, 1621.