A library of 2D electronic material inks synthesized by liquid-metal-assisted intercalation of crystal powders
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
22275113
National Natural Science Foundation of China (National Science Foundation of China)
Z240025
Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
Dushi Program
Tsinghua University (THU)
PubMed
39079965
PubMed Central
PMC11289403
DOI
10.1038/s41467-024-50697-z
PII: 10.1038/s41467-024-50697-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Solution-processable 2D semiconductor inks based on electrochemical molecular intercalation and exfoliation of bulk layered crystals using organic cations has offered an alternative pathway to low-cost fabrication of large-area flexible and wearable electronic devices. However, the growth of large-piece bulk crystals as starting material relies on costly and prolonged high-temperature process, representing a critical roadblock towards practical and large-scale applications. Here we report a general liquid-metal-assisted approach that enables the electrochemical molecular intercalation of low-cost and readily available crystal powders. The resulted solution-processable MoS2 nanosheets are of comparable quality to those exfoliated from bulk crystals. Furthermore, this method can create a rich library of functional 2D electronic inks ( >50 types), including 2D wide-bandgap semiconductors of low electrical conductivity. Lastly, we demonstrated the all-solution-processable integration of 2D semiconductors with 2D conductors and 2D dielectrics for the fabrication of large-area thin-film transistors and memristors at a greatly reduced cost.
See more in PubMed
Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science340, 1226419 (2013).
Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature562, 254–258 (2018). PubMed
Yang, R. et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc.17, 358–377 (2022). PubMed
Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science375, 852–859 (2022). PubMed
Tang, B. et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun.13, 3037 (2022). PubMed PMC
Lin, Z., Huang, Y. & Duan, X. Van der Waals thin-film electronics. Nat. Electron.2, 378–388 (2019).
Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science356, 69–73 (2017). PubMed
Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater.7, 717–735 (2022).
McManus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol.12, 343–350 (2017). PubMed
Li, L. et al. Interface capture effect printing atomic-thick 2D semiconductor thin films. Adv. Mater.34, 2207392 (2022). PubMed
Carey, T. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun.8, 1202 (2017). PubMed PMC
Kim, J. et al. All-solution-processed van der Waals heterostructures for wafer-scale electronics. Adv. Mater.34, 2106110 (2022). PubMed
Zou, T. & Noh, Y. Y. Solution-processed 2D transition metal dichalcogenides: materials to CMOS electronics. Acc. Mater. Res.4, 548–559 (2023).
Liu, K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett.12, 1538–1544 (2012). PubMed
Li, W. et al. Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater.35, 2207447 (2023). PubMed
Ippolito, S. et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol.16, 592–598 (2021). PubMed
Zhang, C. et al. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl Sci. Rev.7, 324–332 (2020). PubMed PMC
Kuo, L. et al. All-printed ultrahigh-responsivity MoS2 nanosheet photodetectors enabled by megasonic exfoliation. Adv. Mater.34, 2203772 (2022). PubMed
Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed.50, 11093–11097 (2011). PubMed
Ambrosi, A., Sofer, Z. & Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed.56, 10443–10445 (2017). PubMed
Ambrosi, A. & Pumera, M. Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev.47, 7213–7224 (2018). PubMed
Peng, J. et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc.139, 9019–9025 (2017). PubMed
Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun.5, 2995 (2014). PubMed
Shi, Z. et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature621, 300–305 (2023). PubMed
Wang, S. et al. Electrochemical molecular intercalation and exfoliation of solution-processable two-dimensional crystals. Nat. Protoc.18, 2814–2837 (2023). PubMed
Shi, H. et al. Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics. Adv. Mater.32, 1907244 (2020). PubMed
Yang, S. et al. A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew. Chem. Int. Ed.57, 4677–4681 (2018). PubMed
Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater.20, 181–187 (2021). PubMed
Peng, J. et al. Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nat. Chem.13, 1235–1240 (2021). PubMed
Yu, W. et al. High-yield exfoliation of monolayer 1T′-MoTe2 as saturable absorber for ultrafast photonics. ACS Nano15, 18448–18457 (2021). PubMed
Zou, T. et al. High-performance solution-processed 2D p-type WSe2 transistors and circuits through molecular doping. Adv. Mater.35, 2208934 (2023). PubMed
Kwon, Y. A. et al. Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina. Nat. Electron.6, 443–450 (2023).
Hao, Q. et al. Surface-modified ultrathin InSe nanosheets with enhanced stability and photoluminescence for high-performance optoelectronics. ACS Nano14, 11373–11382 (2020). PubMed
Wells, R. A. et al. High performance semiconducting nanosheets via a scalable powder-based electrochemical exfoliation technique. ACS Nano16, 5719–5730 (2022). PubMed
Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science358, 332–335 (2017). PubMed
Zavabeti, A. et al. High-mobility p-type semiconducting two-dimensional β-TeO2. Nat. Electron.4, 277–283 (2021).
Kong, W. et al. Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv. Mater.31, 1904309 (2019). PubMed
Wang, C. et al. A general approach to composites containing nonmetallic fillers and liquid gallium. Sci. Adv.7, eabe3767 10.1126/sciadv.abe3767 (2021). PubMed PMC
Khan, M. R., Eaker, C. B., Bowden, E. F. & Dickey, M. D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. USA111, 14047–14051 (2014). PubMed PMC
Eaker, C. B., Hight, D. C., O’Regan, J. D., Dickey, M. D. & Daniels, K. E. Oxidation-mediated fingering in liquid metals. Phys. Rev. Lett.119, 174502 (2017). PubMed
Mayyas, M. et al. Liquid-metal-templated synthesis of 2D graphitic materials at room temperature. Adv. Mater.32, 2001997 (2020). PubMed
Mayyas, M. et al. Gallium-based liquid metal reaction media for interfacial precipitation of bismuth nanomaterials with controlled phases and morphologies. Adv. Funct. Mater.32, 2108673 (2022).
Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem7, 1887–1902 (2021).
Xue, J. et al. Solution-processable assembly of 2D semiconductor thin films and superlattices with photoluminescent monolayer inks. Chem10, 1471–1484 (2024).
Joung, S. Y. et al. All-solution-processed high-performance MoS2 thin-film transistors with a quasi-2D perovskite oxide dielectric. ACS Nano18, 1958–1968 (2024). PubMed
Osada, M. et al. Robust high-κ response in molecularly thin perovskite nanosheets. ACS Nano4, 5225–5232 (2010). PubMed