Flow analysis-solid phase extraction system and UHPLC-MS/MS analytical methodology for the determination of antiviral drugs in surface water
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39080168
PubMed Central
PMC11324774
DOI
10.1007/s11356-024-34466-5
PII: 10.1007/s11356-024-34466-5
Knihovny.cz E-zdroje
- Klíčová slova
- Antiviral drugs, Emerging contaminants, Flow analysis, Solid phase extraction, UHPLC-MS/MS, Water analysis,
- MeSH
- antivirové látky * analýza MeSH
- chemické látky znečišťující vodu * analýza MeSH
- extrakce na pevné fázi * MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- voda chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky * MeSH
- chemické látky znečišťující vodu * MeSH
- voda MeSH
An automated flow analysis-solid phase extraction (FA-SPE) system and methodology of ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) analysis were developed for the determination of selected antiviral drugs (acyclovir, amantadine, rimantadine, and oseltamivir) in water samples. The proposed FA-SPE approach enables the integration of various extraction stages and elimination of the sample evaporation step and offers individual customisation of SPE parameters, inter alia sample, and eluate flow rate and volume. Using the developed FA-SPE procedure, e.g. a 100-fold preconcentration of the target analytes in 1 h was achieved. A method for chromatographic analysis was also developed to determine the selected antiviral drugs in combination with the use of the FA-SPE system. The developed FA-SPE UHPLC-MS/MS method was validated including the determination of linearity of analytical graphs, limits of detection (5.5-99.9 pg mL-1) and quantification (18.3-329.8 pg mL-1), intra-day (1.8-8.3%) and inter-day (3.0-9.2%) precision, recovery (95.6-105.3%), and matrix effects (- 12.9 to 13.2%). The proposed method was successfully applied to analyse tap, drinking, and river water samples, revealing the presence of amantadine at a concentration of 40.1 pg mL-1 in one sample. The environmental impact of the developed FA-SPE sample preparation procedure was also assessed using the AGREEprep metric tool and compared with five other literature methods, achieving the most sustainable outcome.
Zobrazit více v PubMed
Azuma T, Nakada N, Yamashita N, Tanaka H (2012) Synchronous dynamics of observed and predicted values of anti-influenza drugs in environmental waters during a seasonal influenza outbreak. Environ Sci Technol 46:12873–12881. 10.1021/es303203c 10.1021/es303203c PubMed DOI
Azuma T, Ishida M, Hisamatsu K, Yunoki A, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Mino Y (2017) Fate of new three anti-influenza drugs and one prodrug in the water environment. Chemosphere 169:550–557. 10.1016/j.chemosphere.2016.11.102 10.1016/j.chemosphere.2016.11.102 PubMed DOI
Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Ishida M, Hisamatsu K, Yunoki A, Mino Y, Hayashi T (2019) Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan. Sci Total Environ 657:476–484. 10.1016/j.scitotenv.2018.11.433 10.1016/j.scitotenv.2018.11.433 PubMed DOI
Couto CF, Lange LC, Amaral MCS (2019) Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—a review. J Water Process Eng 32:100927. 10.1016/j.jwpe.2019.10092710.1016/j.jwpe.2019.100927 DOI
Eryildiz B, Yavuzturk Gul B, Koyuncu I (2022) A sustainable approach for the removal methods and analytical determination methods of antiviral drugs from water/wastewater: a review. J Water Process Eng 49:103036. 10.1016/j.jwpe.2022.103036 10.1016/j.jwpe.2022.103036 PubMed DOI PMC
Funke J, Prasse C, Ternes TA (2016) Identification of transformation products of antiviral drugs formed during biological wastewater treatment and their occurrence in the urban water cycle. Water Res 98:75–83. 10.1016/j.watres.2016.03.045 10.1016/j.watres.2016.03.045 PubMed DOI
Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem 37:61–72. 10.1016/j.trac.2012.03.01310.1016/j.trac.2012.03.013 DOI
Ghosh GC, Nakada N, Yamashita N, Tanaka H (2010) Oseltamivir carboxylate, the active metabolite of oseltamivir phosphate (Tamiflu), detected in sewage discharge and river water in Japan. Environ Health Perspect 118:103–107. 10.1289/ehp.0900930 10.1289/ehp.0900930 PubMed DOI PMC
He J, Feng T, Tao L, Peng Y, Tong L, Zhao X, Shao X, Xu L, Yang Y, Zhao (2022) Distribution and impacts on the geological environment of antiviral drugs in major waters of Wuhan, China. China Geol 5:402–410. 10.31035/cg202204710.31035/cg2022047 DOI
International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (2022) Validation of Analytical Procedures, Q2(R2)/Q14, Step b, https://database.ich.org/sites/default/files/ICH_Q2%28R2%29_Guideline_2023_1130.pdf. Accessed 25 July 2024
Jain S, Kumar P, Vyas RK, Pandit P, Dalai AK (2013) occurrence and removal of antiviral drugs in environment: a review. Water Air Soil Pollut 224:1410. 10.1007/s11270-012-1410-310.1007/s11270-012-1410-3 DOI
Kausar S, Said Khan F, IshaqMujeeb Ur Rehman M, Akram M, Riaz M, Rasool G, Hamid Khan A, Saleem I, Shamim S, Malik A (2021) A review: mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol 35:205873842110026. 10.1177/2058738421100262110.1177/20587384211002621 PubMed DOI PMC
K’oreje KO, Vergeynst L, Ombaka D, De Wispelaere P, Okoth M, Van Langenhove H, Demeestere K (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244. 10.1016/j.chemosphere.2016.01.095 10.1016/j.chemosphere.2016.01.095 PubMed DOI
Krasucka P, Rombel A, Yang XJ, Rakowska M, Xing B, Oleszczuk P (2022) Adsorption and desorption of antiviral drugs (ritonavir and lopinavir) on sewage sludges as a potential environmental risk. J Hazard Mater 425:127901. 10.1016/j.jhazmat.2021.127901 10.1016/j.jhazmat.2021.127901 PubMed DOI
Marasco Júnior CA, Sartore DM, Lamarca RS, Da Silva BF, Santos-Neto ÁJ, Lima Gomes PCFD (2021) On-line solid-phase extraction of pharmaceutical compounds from wastewater treatment plant samples using restricted access media in column-switching liquid chromatography-tandem mass spectrometry. J Chromatogr B 1180:122896. 10.1016/j.jchromb.2021.12289610.1016/j.jchromb.2021.122896 PubMed DOI
Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem 75:3019–3030. 10.1021/ac020361s 10.1021/ac020361s PubMed DOI
Melchert WR, Reis BF, Rocha FRP (2012) Green chemistry and the evolution of flow analysis. A review. Anal Chim Acta 714:8–19. 10.1016/j.aca.2011.11.044 10.1016/j.aca.2011.11.044 PubMed DOI
Nannou C, Ofrydopoulou A, Evgenidou E, Heath D, Heath E, Lambropoulou D (2019) Analytical strategies for the determination of antiviral drugs in the aquatic environment. Trends Environ Anal Chem 24:e00071. 10.1016/j.teac.2019.e0007110.1016/j.teac.2019.e00071 DOI
Nannou C, Ofrydopoulou A, Evgenidou E, Heath D, Heath E, Lambropoulou D (2020) Antiviral drugs in aquatic environment and wastewater treatment plants: a review on occurrence, fate, removal and ecotoxicity. Sci Total Environ 699:134322. 10.1016/j.scitotenv.2019.134322 10.1016/j.scitotenv.2019.134322 PubMed DOI
Nowak PM, Kościelniak P (2019) What color is your method? Adaptation of the RGB additive colour model to analytical method evaluation. Anal Chem 91:10343–10352. 10.1021/acs.analchem.9b01872 10.1021/acs.analchem.9b01872 PubMed DOI
Pena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREE—Analytical GREEnness metric approach and software. Anal Chem 92:10076–10082. 10.1021/acs.analchem.0c01887 10.1021/acs.analchem.0c01887 PubMed DOI PMC
Peng X, Wang C, Zhang K, Wang Z, Huang Q, Yu Y, Ou W (2014) Profile and behaviour of antiviral drugs in aquatic environments of the Pearl River Delta, China. Sci Total Environ 466–467:755–761. 10.1016/j.scitotenv.2013.07.06210.1016/j.scitotenv.2013.07.062 PubMed DOI
Płotka-Wasylka J, Wojnowski W (2021) Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem 23:8657–8665. 10.1039/D1GC02318G10.1039/D1GC02318G DOI
Prasse C, Schlüsener MP, Schulz R, Ternes TA (2010) Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance? Environ Sci Technol 44:1728–1735. 10.1021/es903216p 10.1021/es903216p PubMed DOI
Söderström H, Järhult JD, Olsen B, Lindberg RH, Tanaka H, Fick J (2009) Detection of the antiviral drug oseltamivir in aquatic environments. PLoS ONE 4:e6064. 10.1371/journal.pone.0006064 10.1371/journal.pone.0006064 PubMed DOI PMC
Takanami R, Ozaki H, Giri RR, Taniguchi S, Hayashi S (2012) Antiviral drugs zanamivir and oseltamivir found in wastewater and surface water in Osaka, Japan. J Water Environ Technol 10:57–68. 10.2965/jwet.2012.5710.2965/jwet.2012.57 DOI
Tobiszewski M, Mechlińska A, Namieśnik J (2010) Green analytical chemistry—theory and practice. Chem Soc Rev 39:2869. 10.1039/b926439f 10.1039/b926439f PubMed DOI
Vardanyan R, Hruby V (2016) Antiviral drugs. In: Synthesis of best-seller drugs. Elsevier, pp. 687–736. 10.1016/B978-0-12-411492-0.00034-1
Vergeynst L, Haeck A, De Wispelaere P, Van Langenhove H, Demeestere K (2015) Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography–magnetic sector mass spectrometry: method quality assessment and application in a Belgian case study. Chemosphere 119:S2–S8. 10.1016/j.chemosphere.2014.03.069 10.1016/j.chemosphere.2014.03.069 PubMed DOI
Wojnowski W, Tobiszewski M, Pena-Pereira F, Psillakis E (2022) AGREEprep – analytical greenness metric for sample preparation. TrAC Trends Anal Chem 149:116553. 10.1016/j.trac.2022.11655310.1016/j.trac.2022.116553 DOI