Influence of calcination temperature and particle size distribution on the physical properties of SrFe12O19 and BaFe12O19 hexaferrite powders
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
CZ.02.01.01/00/22_008/0004631
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39080426
PubMed Central
PMC11289406
DOI
10.1038/s41598-024-67994-8
PII: 10.1038/s41598-024-67994-8
Knihovny.cz E-resources
- Keywords
- BaFe12O19, Hysteresis loops, M-type ferrites, Magnetic interactions, Microstructure, SrFe12O19,
- Publication type
- Journal Article MeSH
The paper deals with the economic optimisation of ferrite powder preparation during producing hard ferrite magnets. The magnetic properties of ferrites are investigated by replacing feedstock and reducing calcination temperature and particles in the order of tens of microns. The granulates about 8-10 mm in size were calcined for 2 h in the temperature range from 1100 °C to 1300 °C and additionally crushed and milled to an average particle size of about 80-90 µm. The scanning electron microscopy images confirmed the agglomerates of particles with different shapes and sizes in tens of µm. The X-ray diffraction measurements revealed that, besides the SrFe12O19 and BaFe12O19 phases, there was also the presence of 2-39% hematite. The highest values of maximum energy product (BH)max = 930 J/m3 and remanent magnetic induction Br = 72.8 mT were obtained at a calcination temperature of 1300 °C. The Henkel plots confirmed the presence of exchange-coupling and dipolar magnetic interactions at lower and higher magnetic fields, respectively. The strength of interactions was also dependent on the calcination temperature. Replacing strontium with barium led to a deterioration of the magnetic parameters, which were optimal at a lower calcination temperature (1100 °C). This phenomenon was partly overcome by reducing the mean particle size of Ba-based hexaferrites to 45-50 µm.
See more in PubMed
Qiu, J., Zhang, Q. & Gu, M. Effect of aluminum substitution on microwave absorption properties of barium hexaferrite. J. Appl. Phys.98(10), 103905 (2005).10.1063/1.2135412 DOI
Dishovske, N., Petkov, A. & Nedkov, I. Hexaferrite contribution to microwave absorbers characteristics. IEEE Trans. Magn.30(2), 969–971 (1994).10.1109/20.312461 DOI
Langhof, N. & Göbbels, M. Hexaferrites and phase relations in the iron-rich part of the system Sr–La–Co–Fe–O. J. Solid State Chem.182(10), 2725–2732 (2009).10.1016/j.jssc.2009.07.024 DOI
Shirk, B. T. & Bussem, W. R. Temperature dependence of Ms and K1 of BaFe12O19 and SrFe12O19 single crystals. J. Appl. Phys.40, 1294 (1969).10.1063/1.1657636 DOI
Topfer, J., Schwarzer, S., Senz, S. & Hesse, D. Influence of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite. J. Eur. Ceram. Soc.25, 1681–1688 (2005).10.1016/j.jeurceramsoc.2004.06.003 DOI
Zi, Z. F. et al. Magnetic properties of c-axis oriented Sr0.8La0.2Fe11.8Co0.2O1.9 ferrite film prepared by chemical solution deposition. J. Magn. Magn. Mater.322(22), 3638–3641 (2010).10.1016/j.jmmm.2010.07.013 DOI
Morisako, A., Liu, X. & Matsumoto, M. The effect of underlayer for Ba-ferrite sputtered films on-axis orientation. J. Appl. Phys.81, 4374 (1997).10.1063/1.364828 DOI
Wane, I. et al. Thick barium hexaferrite (Ba-M) films prepared by electron-beam evaporation for microwave application. J. Magn. Magn. Mater.211(1–3), 309–313 (2000).10.1016/S0304-8853(99)00752-0 DOI
Oliver, S. A., Yoon, S. D., Kozulin, I., Chen, M. L. & Vittoria, C. Growth and characterization of thick oriented barium hexaferrite films on MgO (111) substrates. Appl. Phys. Lett.76(24), 3612 (2000).10.1063/1.126723 DOI
Shater, R. E. E. & El-Ghayyawz, E. H. Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19. J. Alloys Compd.739, 327–334 (2018).10.1016/j.jallcom.2017.12.228 DOI
Richerson, D. R., Garcia, R. M., Ruiz, E. R., Rams, E. E. & Sanchez, R. M. Modern Ceramic Engineering (Marcel Dekker, 1992).
Castro, S. et al. Structural and magnetic properties of barium hexaferrite nanostructured particles prepared by the combustion method. J. Magn. Magn. Mater.152, 61–69 (1996).10.1016/0304-8853(95)00450-5 DOI
Céspedes, E. et al. Inter-grain effects on the magnetism of M-type strontium ferrite. J. Alloys Compd.692, 280–287 (2017).10.1016/j.jallcom.2016.08.318 DOI
Saini, A. et al. Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range. Eng. Sci. Technol. Int. J.19(2), 911–916 (2016).
Tan, G. & Chen, X. Structure and multiferroic properties of barium hexaferrite ceramics. J. Magn. Magn. Mater.327, 87–90 (2013).10.1016/j.jmmm.2012.09.047 DOI
Li, L. et al. Attractive microwave-absorbing properties of M-BaFe12O19 ferrite. J. Alloys Compd.557, 11–17 (2013).10.1016/j.jallcom.2012.12.148 DOI
Li, J. et al. Microstructure, magnetic and low-frequency microwave absorption properties of doped Co–Ti hexagonal barium ferrite nanoparticles. Ceram. Int.47(13), 19247–19253 (2021).10.1016/j.ceramint.2021.03.191 DOI
Zegzulka, J., Jezerska, L., Liptakova, T., Hlosta, J. & Necas, J. Study of structural and selected mechanical/physical properties of metal powders. Proceedings of the METAL 2015: 24th International Conference on Metallurgy and Materials. 1457–1462, (2015).
Hlosta, J., Zurovec, D., Zidek, M. & Zegzulka, J. Mechanical properties of powdered coal and their influence to technological processes. Inzynieria Mineralna-J. Pol. Min. Eng. Soc.2, 107–112 (2014).
Dippong, T., Levei, E. A., Toloman, D., Barbu-Tudoran, L. & Cadar, O. Investigation on the formation, structural and photocatalytic properties of mixed Mn-Zn ferrites nanoparticles embedded in SiO2 matrix. J. Anal. Appl. Pyrolysis158, 105281 (2021).10.1016/j.jaap.2021.105281 DOI
Dippong, T., Levei, E. A., Goga, F. & Cadar, O. Influence of Mn2+ substitution with Co2+ on structural, morphological and coloristic properties of MnFe2O4/SiO2 nanocomposites. Mater. Charact.172, 110835 (2021).10.1016/j.matchar.2020.110835 DOI
Dippong, T., Levei, E. A., Deac, G., Petean, L. & Borodi, G. Sol-gel synthesis, structure, morphology and magnetic properties of Ni0.6Mn0.4Fe2O4 nanoparticles embedded in SiO2 matrix. Nanomaterials11(12), 3455 (2021). 10.3390/nano11123455 PubMed DOI PMC
Dippong, T., Toloman, D., Dan, M., Levei, E. A. & Cadar, O. Structural, morphological and photocatalytic properties of Ni-Mn ferrites: Influence of the Ni:Mn ratio. J. Alloys Compd.913, 165129 (2022).10.1016/j.jallcom.2022.165129 DOI
Mahgoob, A. & Hudeish, A. Y. Thermal annealing effect on the structural and magnetic properties of barium hexaferrite powders. Middle East J. Sci. Res.15(6), 834–839 (2013).
Brightlin, B. C. & Balamurugan, S. The effect of post annealing treatment on the citrate sol–gel derived nanocrystalline BaFe12O19 powder: Structural, morphological, optical and magnetic properties. Appl. Nanosci.6, 1199–1210 (2016).10.1007/s13204-016-0531-1 DOI
Castelliz, L. M., Kim, K. M. & Boucher, P. S. Preparation, stability range and high frequency permeability of some ferroxplana compounds. J. Can. Ceram. Soc.38, 57 (1969).
Neckenburger, E., Severin, H., Vogel, J. K. & Winkler, G. Z. Angew Ferrite hexagonaler Kristallstrustur mit hoher Grenzfre-quenz. Z. Angew Phys.18, 65 (1964).
Vinnik, M. A. Phase relationships in the BaO-CoO-Fe2O3 system. Russ. J. Inorg. Chem.10, 1164–1167 (1965).
Kuznetsova, S. I., Naiden, E. P. & Stepanova, T. N. Topotactic reaction kinetics in the formation of the hexagonal ferrite Ba3Co2Fe24O41. Inorg. Mater.24, 856 (1988).
Drobek, J., Bigelow, W. C. & Wells, R. G. Electron microscopic studies of growth structures in hexagonal ferrites. J. Am. Ceram. Soc.44, 262 (1961).10.1111/j.1151-2916.1961.tb15375.x DOI
Shashanka, H. M., Anantharamaiah, P. N. & Joy, P. A. Magnetic parameters of SrFe12O19 sintered from a mixture of nanocrystalline and micron-sized powders. Ceram. Int.45(10), 13592–13596 (2019).10.1016/j.ceramint.2019.04.023 DOI
Wagner, D. V., Kareva, K. V., Zhuravlev, V. A., Dotsenko, O. A. & Minin, R. V. Investigation of BaFe12O19 hexaferrites manufactured by various synthesis methods using a developed pulsed magnetometer. Inventions8(1), 26 (2023).10.3390/inventions8010026 DOI
Dippong, T., Levei, E. A., Leostean, C. & Cadar, O. Impact of annealing temperature and ferrite content embedded in SiO2 matrix on the structure, morphology and magnetic characteristics of (Co0.4Mn0.6Fe2O4)δ (SiO2)100-δ nanocomposites. J. Alloys Compd.868, 159203 (2021).10.1016/j.jallcom.2021.159203 DOI
Ştefănescu, M., Dippong, T., Stoia, M. & Ştefănescu, O. Study on the obtaining of cobalt oxides by thermal decomposition of some complex combinations, undispersed and dispersed in SiO2 matrix. J. Therm. Anal. Calorim.94(2), 389–393 (2008).10.1007/s10973-008-9111-2 DOI
Stoia, M., Stefanescu, M., Dippong, T., Stefanescu, O. & Barvinschi, P. Low temperature synthesis of Co2SiO4/SiO2 nanocomposite using a modified sol–gel method. J. Sol-Gel Sci. Technol.54(1), 49–56 (2010).10.1007/s10971-010-2156-2 DOI
Deheri, P. K., Swaminathan, V., Bhame, S. D., Liu, Z. & Ramanujan, R. V. Sol−gel based chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Chem. Mater.22(24), 6509–6517 (2010).10.1021/cm103148n DOI
Yang, J. et al. Structural and magnetic properties of nanocomposite Nd–Fe–B prepared by rapid thermal processing. Engineering6(2), 132–140 (2020).10.1016/j.eng.2019.12.008 DOI
Zheng, Q., Li, L., Yang, X., Bian, B. & Du, J. Effect of surfactant-assisted low-temperature annealing on the refinement of particle size and enhancement of magnetic properties of SrFe12O19 ferrite. Ceram. Int.50(9), 16520–16524 (2024).10.1016/j.ceramint.2024.02.139 DOI
Rianna, M. et al. Enhanced calcination temperatures of SrFe12O19 synthesized by local iron sand from Lombok Island. Case Stud. Chem. Environ. Eng.8, 100530 (2023).10.1016/j.cscee.2023.100530 DOI
Manchón-Gordón, A. F., Sánchez-Jiménez, P. E., Blázquez, J. S., Perejón, A. & Pérez-Maqueda, L. A. Reactive flash sintering of SrFe12O19 ceramic permanent magnets. J. Alloys Compd.922, 166203 (2022).10.1016/j.jallcom.2022.166203 DOI