Genome size is positively correlated with extinction risk in herbaceous angiosperms

. 2024 Sep ; 243 (6) : 2470-2485. [epub] 20240730

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39080986

Grantová podpora
RYC-2017-2274 Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación
20-15989S Czech Science Foundation

Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.

Zobrazit více v PubMed

Antonelli A, Fry C, Smith RJ, Simmonds MSJ, Kersey PJ, Pritchard HW, Abbo MS, Acedo C, Adams J, Ainsworth AM et al. 2020. State of the world's plants and fungi 2020. Richmond, UK: Royal Botanic Gardens, Kew.

Bachman S, Walker BE, Barrios S, Copeland A, Moat J. 2020. Rapid least concern: towards automating Red List assessments. Biodiversity Data Journal 8: e47018.

Bachman SP, Brown MJM, Leão TCC, Nic Lughadha E, Walker BE. 2024. Extinction risk predictions for the world's flowering plants to support their conservation. New Phytologist 242: 797–808.

Bachman SP, Field R, Reader T, Raimondo D, Donaldson J, Schatz GE, Lughadha EN. 2019. Progress, challenges and opportunities for Red Listing. Biological Conservation 234: 45–55.

Bachman SP, Nic Lughadha EM, Rivers MC. 2018. Quantifying progress toward a conservation assessment for all plants. Conservation Biology 32: 516–524.

Beaulieu JM, Leitch IJ, Knight CA. 2007. Genome size evolution in relation to leaf strategy and metabolic rates revisited. Annals of Botany 99: 495–505.

Beaulieu JM, Smith S, Leitch IJ. 2010. On the tempo of genome size evolution in angiosperms. Journal of Botany 2010: 989152.

Bennett MD. 1971. The duration of meiosis. Proceedings of the Royal Society B: Biological Sciences 178: 277–299.

Bennett MD. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences 181: 109–135.

Bennett MD. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106: 177–200.

van der Bijl W. 2018. phylopath: easy phylogenetic path analysis in R. PeerJ 6: e4718.

Brilhante M, Roxo G, Catarino S, dos Santos P, Reyes‐Betancort JA, Caujapé‐Castells J, Sequeira MM, Talhinhas P, Romeiras MM. 2021. Diversification of Aeonium species cross Macaronesian archipelagos: correlations between genome‐size variation and their conservation status. Frontiers in Ecology and Evolution 9: 26.

Brown MJM, Walker BE, Black N, Govaerts RHA, Ondo I, Turner R, Nic LE. 2023. rwcvp: a companion R package for the world checklist of vascular plants. New Phytologist 240: 1355–1365.

Brummitt RK, Pando F, Hollis S, Brummitt N. 2001. World geographic scheme for recording plant distributions, 2nd edn. Pittsburgh, PA, USA: Hunt Institute for Botanical Documentation, Carnegie Mellon University.

Bureš P, Elliott TL, Veselý P, Šmarda P, Forest F, Leitch IJ, Nic Lughadha E, Soto Gomez M, Pironon S, Brown MJ. 2024. The global distribution of angiosperm genome size is shaped by climate. New Phytologist 242: 744–759.

Bürkner P‐C. 2017. brms: an R package for Bayesian multilevel models using Stan. Journal of Statistical Software 80: 1–28.

Burnham KP, Anderson DR. 2002. Model selection and inference: a practical information‐theoretic approach. New York, NY, USA: Springer.

Carta A, Mattana E, Dickie J, Vandelook F. 2022. Correlated evolution of seed mass and genome size varies among life forms in flowering plants. Seed Science Research 32: 46–52.

Daru BH, Park DS, Primack RB, Willis CG, Barrington DS, Whitfeld TJ, Seidler TG, Sweeney PW, Foster DR, Ellison AM. 2018. Widespread sampling biases in herbaria revealed from large‐scale digitization. New Phytologist 217: 939–955.

Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G. 2009. Multiple ecological pathways to extinction in mammals. Proceedings of the National Academy of Sciences, USA 106: 10702–10705.

Faizullah L, Morton JA, Hersch‐Green EI, Walczyk AM, Leitch AR, Leitch IJ. 2021. Exploring environmental selection on genome size in angiosperms. Trends in Plant Science 26: 1039–1049.

Feng X, Zhong L, Zhou H, Bi J, Batool H, Zhang X, Zhao W. 2022. The limiting effect of genome size on xylem vessel diameter is shifted by environmental pressures in seed plants. Plant Direct 6: e471.

Forest F. 2023. Species‐level phylogenetic trees of all angiosperm species (100 trees) (v. 1.0). [WWW document] URL https://zenodo.org/record/7600341.

Fritz SA, Purvis A. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology 24: 1042–1051.

Gaston KJ. 2003. The structure and dynamics of geographic ranges. Oxford, UK: Oxford University Press.

Gonzalez‐Voyer A, von Hardenberg A. 2014. An introduction to phylogenetic path analysis. In: Garamszegi LZ, ed. Modern phylogenetic comparative methods and their application in evolutionary biology. Berlin Heidelberg: Springer‐Verlag, 201–229.

Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021. The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8: 215.

Grover CE, Wendel JF. 2010. Recent insights into mechanisms of genome size change in plants. Journal of Botany 2010: 1–8.

Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C‐A, Trimmer M, Leitch IJ, Leitch AR. 2016. Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytologist 210: 1195–1206.

Guo K, Pyšek P, van Kleunen M, Kinlock NL, Lučanová M, Leitch IJ, Pierce S, Dawson W, Essl F, Kreft H et al. 2024. Plant invasion and naturalization are influenced by genome size, ecology and economic use globally. Nature Communications 15: 1330.

Guo W‐Y, van Kleunen M, Pierce S, Dawson W, Essl F, Kreft H, Maurel N, Pergl J, Seebens H, Weigelt P et al. 2019. Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Global Ecology and Biogeography 28: 628–639.

von Hardenberg A, Gonzalez‐Voyer A. 2013. Disentangling evolutionary cause‐effect relationships with phylogenetic confirmatory path analysis. Evolution 67: 378–387.

Harfoot MBJ, Johnston A, Balmford A, Burgess ND, Butchart SHM, Dias MP, Hazin C, Hilton‐Taylor C, Hoffmann M, Isaac NJB et al. 2021. Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nature Ecology & Evolution 5: 1510–1519.

Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901–908.

Ho LST, Ané C. 2014a. A linear‐time algorithm for Gaussian and non‐Gaussian trait evolution models. Systematic Biology 63: 397–408.

Ho LST, Ané C. 2014b. Intrinsic inference difficulties for trait evolution with Ornstein‐Uhlenbeck models. Methods in Ecology and Evolution 5: 1133–1146.

Humphreys AM, Govaerts R, Ficinski SZ, Nic Lughadha E, Vorontsova MS. 2019. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nature Ecology & Evolution 3: 1043–1047.

IPBES. 2019. Global assessment report on biodiversity and ecosystem services. Bonn, Germany: Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services.

IUCN. 2012. IUCN Red List categories and criteria: v. 3.1. 2nd edn. Gland, Switzerland and Cambridge, UK: IUCN, iv + 32pp.

IUCN. 2022. The IUCN Red List of threatened species (v.2022‐2). Gland, Switzerland: IUCN.

Ives AR, Garland T Jr. 2010. Phylogenetic logistic regression for binary dependent variables. Systematic Biology 59: 9–26.

Knight CA, Ackerly DD. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66–76.

Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190.

LaBar T, Adami C. 2020. Genome size and the extinction of small populations. In: Banzhaf W, Cheng BHC, Deb K, Holekamp KE, Lenski RE, Ofria C, Pennock RT, Punch WF, Whittaker DJ, eds. Evolution in action: past, present and future. Cham, Switzerland: Springer, 167–183.

Le Roux JJ, Hui C, Castillo ML, Iriondo JM, Keet J‐H, Khapugin AA, Médail F, Rejmánek M, Theron G, Yannelli FA et al. 2019. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Current Biology 29: 2912–2918.

Leitch AR, Leitch IJ. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629–646.

Leitch IJ, Bennett MD. 2004. Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82: 651–663.

Leitch IJ, Chase MW, Bennett MD. 1998. Phylogenetic analysis of DNA C‐values provides evidence for a small ancestral genome size in flowering plants. Annals of Botany 82: 85–94.

Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD. 2019. Plant DNA C‐values database (release 7.1, April 2019). [WWW document] URL https://cvalues.science.kew.org/.

Levin DA, Funderburg SW. 1979. Genome size in angiosperms: temperate versus tropical species. American Naturalist 114: 784–795.

Levin DA, Wilson AC. 1976. Rates of evolution in seed plants–net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences, USA 73: 2086–2090.

Lynch M, Conery JS. 2003. The origins of genome complexity. Science 302: 1401–1404.

Mace GM, Collar NJ, Gaston KJ, Hilton‐Taylor C, Akçakaya HR, Leader‐Williams N, Milner‐Gulland EJ, Stuart SN. 2008. Quantification of extinction risk: IUCN's system for classifying threatened species. Conservation Biology 22: 1424–1442.

Newton A, Oldfield S. 2008. Red Listing the world's tree species: a review of recent progress. Endangered Species Research 6: 137–147.

Nic Lughadha E, Bachman SP, Leão TCC, Forest F, Halley JM, Moat J, Acedo C, Bacon KL, Brewer RFA, Gâteblé G et al. 2020. Extinction risk and threats to plants and fungi. Plants, People, Planet 2: 389–408.

Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S, Kovařík A, Pellicer J, Wang W et al. 2020. Repeat‐sequence turnover shifts fundamentally in species with large genomes. Nature Plants 6: 1325–1329.

Palmer MW, Earls PG, Hoagland BW, White PS, Wohlgemuth T. 2002. Quantitative tools for perfecting species lists. Environmetrics 13: 121–137.

Pandit MK, Pocock MJO, Kunin WE. 2011. Ploidy influences rarity and invasiveness in plants. Journal of Ecology 99: 1108–1115.

Pandit MK, White SM, Pocock MJO. 2014. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytologist 203: 697–703.

Payne JL, Finnegan S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences, USA 104: 10506–10511.

Pelletier TA, Carstens BC, Tank DC, Sullivan J, Espíndola A. 2018. Predicting plant conservation priorities on a global scale. Proceedings of the National Academy of Sciences, USA 115: 13027–13032.

Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.

Peng Y, Yang J, Leitch IJ, Guignard MS, Seabloom EW, Cao D, Zhao F, Li H, Han X, Yong J et al. 2022. Plant genome size modulates grassland community responses to multi‐nutrient additions. New Phytologist 236: 2091–2102.

Petit RJ, Hampe A. 2006. Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution, and Systematics 37: 187–214.

Pincheira‐Donoso D, Harvey LP, Johnson JV, Hudson D, Finn C, Goodyear LEB, Guirguis J, Hyland EM, Hodgson DJ. 2023. Genome size does not influence extinction risk in the world's amphibians. Functional Ecology 37: 190–200.

Raunkiær C. 1934. The life forms of plants and statistical plant geography being the collected papers of C. Raunkiaer. Oxford, UK: Oxford at the Clarendon Press.

Rivers MC, Brummitt NA, Nic Lughadha E, Meagher TR. 2014. Do species conservation assessments capture genetic diversity? Global Ecology and Conservation 2: 81–87.

Roddy AB, Alvarez‐Ponce D, Roy SW. 2021. Mammals with small populations do not exhibit larger genomes. Molecular Biology and Evolution 38: 3737–3741.

Roddy AB, Théroux‐Rancourt G, Abbo T, Benedetti JW, Brodersen CR, Castro M, Castro S, Gilbride AB, Jensen B, Jiang G‐F et al. 2020. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal of Plant Sciences 181: 75–87.

Schley RJ, Pellicer J, Ge X‐J, Barrett C, Bellot S, Guignard MS, Novák P, Suda J, Fraser D, Baker WJ et al. 2022. The ecology of palm genomes: repeat‐associated genome size expansion is constrained by aridity. New Phytologist 236: 433–446.

Schmidt C, Hoban S, Hunter M, Paz‐Vinas I, Garroway CJ. 2023. Genetic diversity and IUCN Red List status. Conservation Biology 37: e14064.

Simonin KA, Roddy AB. 2018. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biology 16: e2003706.

Šímová I, Herben T. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences 279: 867–875.

Slatyer RA, Hirst M, Sexton JP. 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecology Letters 16: 1104–1114.

Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J. 2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long‐term grassland fertilization experiment. New Phytologist 200: 911–921.

Sparrow AH, Miksche JP. 1961. Correlation of nuclear volume and DNA content with higher plant tolerance to chronic radiation. Science 134: 282–283.

Stan Development Team. 2024. RStan: the R interface to Stan. R Package v.2.32.5. [WWW document] URL https://mc‐stan‐org/.

Tanentzap AJ. 2017. The costs of saving nature: Does it make “cents”? PLoS Biology 15: e2003292.

Temsch EM, Temsch W, Ehrendorfer‐Schratt L, Greilhuber J. 2010. Heavy metal pollution, selection, and genome size: the species of the Žerjav study revisited with flow cytometry. Journal of Botany 2010: 596542.

Tenaillon MI, Manicacci D, Nicolas SD, Tardieu F, Welcker C. 2016. Testing the link between genome size and growth rate in maize. PeerJ 4: e2408.

Théroux‐Rancourt G, Roddy AB, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK, Tholen D, McElrone AJ, Simonin KA, Brodersen CR. 2021. Maximum CO2 diffusion inside leaves is limited by the scaling of cell size and genome size. Proceedings of the Royal Society B: Biological Sciences 288: 20203145.

Vazquez DM, Lucifora LO. 2023. Estimating intrinsic susceptibility to extinction when little ecological information is available: The case of Neotropical freshwater stingrays (Chondrichthyes: Potamotrygoninae). Fish and Fisheries 24: 1084–1102.

Veselý P, Bureš P, Šmarda P. 2013. Nutrient reserves may allow for genome size increase: evidence from comparison of geophytes and their sister non‐geophytic relatives. Annals of Botany 112: 1193–1200.

Veselý P, Bureš P, Šmarda P, Pavlicek T. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65–75.

Vinogradov AE. 2003. Selfish DNA is maladaptive: evidence from the plant Red List. Trends in Genetics 19: 609–614.

Vinogradov AE. 2004. Genome size and extinction risk in vertebrates. Proceedings of the Royal Society of London. Series B: Biological Sciences 271: 1701–1705.

Walker BE, Leão TCC, Bachman SP, Lucas E, Nic LE. 2022. Evidence‐based guidelines for automated conservation assessments of plant species. Conservation Biology 37: e13992.

Walter KS, Gillett HJ. 1998. 1997 IUCN Red List of threatened plants. Gland, Switzerland: IUCN.

Wang X, Morton J, Pellicer J, Leitch IJ, Leitch AR. 2021. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. The Plant Journal 107: 1003–1015.

Wendel JF. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102: 1753–1756.

White AC, Rogers A, Rees M, Osborne CP. 2016. How can we make plants grow faster? A source–sink perspective on growth rate. Journal of Experimental Botany 67: 31–45.

Yi S, Streelman JT. 2005. Genome size is negatively correlated with effective population size in ray‐finned fish. Trends in Genetics 21: 643–646.

Zhang H‐Y, Lü X‐T, Wei C‐Z, Powell JR, Wang X‐B, Xing D‐L, Xu Z‐W, Li H‐L, Han X‐G. 2022. β‐diversity in temperate grasslands is driven by stronger environmental filtering of plant species with large genomes. Ecology 20: e3941.

Zhukovskaya NV, Ivanov VB. 2022. Dependence of the duration of periods of the mitotic cycle on the holoploid DNA content in root apical meristems. Russian Journal of Developmental Biology 53: 363–372.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...