Single-cell profiling of surface glycosphingolipids opens a new dimension for deconvolution of breast cancer intratumoral heterogeneity and phenotypic plasticity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39084491
PubMed Central
PMC11405820
DOI
10.1016/j.jlr.2024.100609
PII: S0022-2275(24)00114-7
Knihovny.cz E-zdroje
- Klíčová slova
- breast cancer, epithelial cells, glycosphingolipids, phenotypic plasticity, stromal-like cells, surface profiling,
- MeSH
- analýza jednotlivých buněk * metody MeSH
- epitelo-mezenchymální tranzice * MeSH
- fenotyp MeSH
- glykosfingolipidy * metabolismus analýza MeSH
- lidé MeSH
- nádory prsu * metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykosfingolipidy * MeSH
Glycosylated sphingolipids (GSLs) are a diverse group of cellular lipids typically reported as being rare in normal mammary tissue. In breast cancer (BCa), GSLs have emerged as noteworthy markers associated with breast cancer stem cells, mediators of phenotypic plasticity, and contributors to cancer cell chemoresistance. GSLs are potential surface markers that can uniquely characterize the heterogeneity of the tumor microenvironment, including cancer cell subpopulations and epithelial-mesenchymal plasticity (EMP). In this study, mass spectrometry analyses of the total sphingolipidome in breast epithelial cells and their mesenchymal counterparts revealed increased levels of Gb3 in epithelial cells and significantly elevated GD2 levels in the mesenchymal phenotype. To elucidate if GSL-related epitopes on BCa cell surfaces reflect EMP and cancer status, we developed and rigorously validated a 12-color spectral flow cytometry panel. This panel enables the simultaneous detection of native GSL epitopes (Gb3, SSEA1, SSEA3, SSEA4, and GD2), epithelial-mesenchymal transition markers (EpCAM, TROP2, and CD9), and lineage markers (CD45, CD31, and CD90) at the single-cell level. Next, the established panel was used for the analysis of BCa primary tumors and revealed surface heterogeneity in SSEA1, SSEA3, SSEA4, GD2, and Gb3, indicative of native epitope presence also on non-tumor cells. These findings further highlighted the phenotype-dependent alterations in GSL surface profiles, with differences between epithelial and stromal cells in the tumor. This study provides novel insights into BCa heterogeneity, shedding light on the potential of native GSL-related epitopes as markers for EMP and cancer status in fresh clinical samples. The developed single-cell approach offers promising avenues for further exploration.
Department of Pharmacology and Toxicology Veterinary Research Institute Brno Czech Republic
Institute of Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czech Republic
Prostate Cancer Centre Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Hakomori S., Kannagi R. Glycosphingolipids as tumor-associated and differentiation markers. J. Natl. Cancer Inst. 1983;71:231–251. PubMed
Fox N., Damjanov I., Knowles B.B., Solter D. Immunohistochemical localization of the mouse stage-specific embryonic antigen 1 in human tissues and tumors. Cancer Res. 1983;43:669–678. PubMed
Igarashi Y., Kannagi R. Glycosphingolipids as mediators of phenotypic changes associated with development and cancer progression. J. Biochem. 2010;147:3–8. PubMed
Cazet A., Julien S., Bobowski M., Burchell J., Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res. 2010;12:204. PubMed PMC
Marquina G., Waki H., Fernandez L.E., Kon K., Carr A., Valiente O., et al. Gangliosides expressed in human breast cancer. Cancer Res. 1996;56:5165–5171. PubMed
Sigal D.S., Hermel D.J., Hsu P., Pearce T. The role of Globo H and SSEA-4 in the development and progression of cancer, and their potential as therapeutic targets. Future Oncol. 2022;18:117–134. PubMed
Chang W.W., Lee C.H., Lee P., Lin J., Hsu C.W., Hung J.T., et al. Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc. Natl. Acad. Sci. U. S. A. 2008;105:11667–11672. PubMed PMC
Zhang S., Cordon-Cardo C., Zhang H.S., Reuter V.E., Adluri S., Hamilton W.B., et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J. Cancer. 1997;73:42–49. PubMed
Orsi G., Barbolini M., Ficarra G., Tazzioli G., Manni P., Petrachi T., et al. GD2 expression in breast cancer. Oncotarget. 2017;8:31592–31600. PubMed PMC
Cheng J.Y., Hung J.T., Lin J., Lo F.Y., Huang J.R., Chiou S.P., et al. O-Acetyl-GD2 as a therapeutic target for breast cancer stem cells. Front. Immunol. 2021;12 PubMed PMC
Huang Y.L., Hung J.T., Cheung S.K., Lee H.Y., Chu K.C., Li S.T., et al. Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc. Natl. Acad. Sci. U. S. A. 2013;110:2517–2522. PubMed PMC
D'Angelo G., Capasso S., Sticco L., Russo D. Glycosphingolipids: synthesis and functions. FEBS J. 2013;280:6338–6353. PubMed
Gadhoum S.Z., Sackstein R. CD15 expression in human myeloid cell differentiation is regulated by sialidase activity. Nat. Chem. Biol. 2008;4:751–757. PubMed PMC
Elola M.T., Capurro M.I., Barrio M.M., Coombs P.J., Taylor M.E., Drickamer K., et al. Lewis x antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-type lectin. Breast Cancer Res. Treat. 2007;101:161–174. PubMed PMC
Kohler K.T., Moller Hansen A.A., Kim J., Villadsen R. SSEA-1 correlates with the invasive phenotype in breast cancer. J. Histochem. Cytochem. 2023;71:423–430. PubMed PMC
Matsuura N., Narita T., Mitsuoka C., Kimura N., Kannagi R., Imai T., et al. Increased level of circulating adhesion molecules in the sera of breast cancer patients with distant metastases. Jpn. J. Clin. Oncol. 1997;27:135–139. PubMed
Hogerkorp C.M., Borrebaeck C.A. The human CD77- B cell population represents a heterogeneous subset of cells comprising centroblasts, centrocytes, and plasmablasts, prompting phenotypical revision. J. Immunol. 2006;177:4341–4349. PubMed
Kannagi R., Cochran N.A., Ishigami F., Hakomori S., Andrews P.W., Knowles B.B., et al. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 1983;2:2355–2361. PubMed PMC
Stimmer L., Dehay S., Nemati F., Massonnet G., Richon S., Decaudin D., et al. Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds. BMC Cancer. 2014;14:916. PubMed PMC
Johansson D., Kosovac E., Moharer J., Ljuslinder I., Brannstrom T., Johansson A., et al. Expression of verotoxin-1 receptor Gb3 in breast cancer tissue and verotoxin-1 signal transduction to apoptosis. BMC Cancer. 2009;9:67. PubMed PMC
Sivasubramaniyan K., Harichandan A., Schilbach K., Mack A.F., Bedke J., Stenzl A., et al. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology. 2015;25:902–917. PubMed PMC
Battula V.L., Shi Y., Evans K.W., Wang R.Y., Spaeth E.L., Jacamo R.O., et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J. Clin. Invest. 2012;122:2066–2078. PubMed PMC
Mansoori M., Roudi R., Abbasi A., Abolhasani M., Abdi Rad I., Shariftabrizi A., et al. High GD2 expression defines breast cancer cells with enhanced invasiveness. Exp. Mol. Pathol. 2019;109:25–35. PubMed
Hakomori Si S.I. The glycosynapse. Proc. Natl. Acad. Sci. U. S. A. 2002;99:225–232. PubMed PMC
Regina Todeschini A., Hakomori S.I. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim. Biophys. Acta. 2008;1780:421–433. PubMed PMC
Kim C.-H. 1 ed. Springer Singapore; Singapore: 2020. Glycosphingolipids Signaling.
Jacob F., Alam S., Konantz M., Liang C.Y., Kohler R.S., Everest-Dass A.V., et al. Transition of mesenchymal and epithelial cancer cells depends on alpha1-4 galactosyltransferase-mediated glycosphingolipids. Cancer Res. 2018;78:2952–2965. PubMed
Cumin C., Huang Y.L., Rossdam C., Ruoff F., Cespedes S.P., Liang C.Y., et al. Glycosphingolipids are mediators of cancer plasticity through independent signaling pathways. Cell Rep. 2022;40 PubMed
Lin R.J., Kuo M.W., Yang B.C., Tsai H.H., Chen K., Huang J.R., et al. B3GALT5 knockout alters gycosphingolipid profile and facilitates transition to human naive pluripotency. Proc. Natl. Acad. Sci. U. S. A. 2020;117:27435–27444. PubMed PMC
Remsik J., Fedr R., Navratil J., Bino L., Slabakova E., Fabian P., et al. Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br. J. Cancer. 2018;118:813–819. PubMed PMC
Kvokackova B., Fedr R., Kuzilkova D., Stuchly J., Vavrova A., Navratil J., et al. Single-cell protein profiling defines cell populations associated with triple-negative breast cancer aggressiveness. Mol. Oncol. 2022;17:1024–1040. PubMed PMC
Scheel C., Eaton E.N., Li S.H., Chaffer C.L., Reinhardt F., Kah K.J., et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–940. PubMed PMC
Slabakova E., Kharaishvili G., Smejova M., Pernicova Z., Suchankova T., Remsik J., et al. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Oncotarget. 2015;6:36156–36171. PubMed PMC
Prochazkova J., Slavik J., Bouchal J., Levkova M., Huskova Z., Ehrmann J., et al. Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Biochim. Biophys. Acta Mol. Cell Biol Lipids. 2020;1865 PubMed
Pernicova Z., Slabakova E., Fedr R., Simeckova S., Jaros J., Suchankova T., et al. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol. Cancer. 2014;13:113. PubMed PMC
Linderman G.C., Rachh M., Hoskins J.G., Steinerberger S., Kluger Y. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods. 2019;16:243–245. PubMed PMC
Van Gassen S., Callebaut B., Van Helden M.J., Lambrecht B.N., Demeester P., Dhaene T., et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87:636–645. PubMed
Friendly M. Corrgrams. Am. Statistician. 2002;56:316–324.
Murdoch D.J., Chow E.D. A graphical display of large correlation matrices. Am. Statistician. 1996;50:178–180.
Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–715. PubMed PMC
Yu A.L., Gilman A.L., Ozkaynak M.F., Naranjo A., Diccianni M.B., Gan J., et al. Long-term follow-up of a phase III study of ch14.18 (dinutuximab) + cytokine immunotherapy in children with high-risk neuroblastoma: COG study ANBL0032. Clin. Cancer Res. 2021;27:2179–2189. PubMed PMC
Jensen R.G., ProQuest (firm) Academic Press; San Diego. xxiii: 1995. Handbook of milk composition; p. 919.
Jensen R.G. Academic Press; San Diego: 1995. Handbook of milk composition.
Virtanen S., Schulte R., Stingl J., Caldas C., Shehata M. High-throughput surface marker screen on primary human breast tissues reveals further cellular heterogeneity. Breast Cancer Res. 2021;23:66. PubMed PMC
Yanagisawa M., Yoshimura S., Yu R.K. Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells. ASN Neuro. 2011;3:e00054. PubMed PMC
Huang X., Schurman N., Handa K., Hakomori S. Functional role of glycosphingolipids in contact inhibition of growth in a human mammary epithelial cell line. FEBS Lett. 2017;591:1918–1928. PubMed
Sarkar T.R., Battula V.L., Werden S.J., Vijay G.V., Ramirez-Pena E.Q., Taube J.H., et al. GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene. 2015;34:2958–2967. PubMed PMC
Nguyen K., Yan Y., Yuan B., Dasgupta A., Sun J., Mu H., et al. ST8SIA1 regulates tumor growth and metastasis in TNBC by activating the FAK-AKT-mTOR signaling pathway. Mol. Cancer Ther. 2018;17:2689–2701. PubMed PMC
Russo D., Della Ragione F., Rizzo R., Sugiyama E., Scalabri F., Hori K., et al. Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO J. 2018;37:e97674. PubMed PMC
Chen Y., Ding L., Song W., Yang M., Ju H. Liberation of protein-specific glycosylation information for glycan analysis by exonuclease III-aided recycling hybridization. Anal. Chem. 2016;88:2923–2928. PubMed
Dobie C., Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br. J. Cancer. 2021;124:76–90. PubMed PMC
Roncati L., Barbolini G., Gatti A.M., Pusiol T., Piscioli F., Maiorana A. The uncontrolled sialylation is related to chemoresistant metastatic breast cancer. Pathol. Oncol. Res. 2016;22:869–873. PubMed
Teoh S.T., Ogrodzinski M.P., Ross C., Hunter K.W., Lunt S.Y. Sialic acid metabolism: a key player in breast cancer metastasis revealed by metabolomics. Front. Oncol. 2018;8:174. PubMed PMC
Du J., Hong S., Dong L., Cheng B., Lin L., Zhao B., et al. Dynamic sialylation in transforming growth factor-beta (TGF-beta)-induced epithelial to mesenchymal transition. J. Biol. Chem. 2015;290:12000–12013. PubMed PMC
Fu C.W., Tsai H.E., Chen W.S., Chang T.T., Chen C.L., Hsiao P.W., et al. Sialyltransferase inhibitors suppress breast cancer metastasis. J. Med. Chem. 2021;64:527–542. PubMed
Shao C., Anand V., Andreeff M., Battula V.L. Ganglioside GD2: a novel therapeutic target in triple-negative breast cancer. Ann. N. Y Acad. Sci. 2022;1508:35–53. PubMed
Ly S., Anand V., El-Dana F., Nguyen K., Cai Y., Cai S., et al. Anti-GD2 antibody dinutuximab inhibits triple-negative breast tumor growth by targeting GD2(+) breast cancer stem-like cells. J. Immunother. Cancer. 2021;9:e001197. PubMed PMC
Stanczak M.A., Rodrigues Mantuano N., Kirchhammer N., Sanin D.E., Jacob F., Coelho R., et al. Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Sci. Transl. Med. 2022;14 PubMed PMC
Kirchhammer N., Trefny M.P., Auf der Maur P., Laubli H., Zippelius A. Combination cancer immunotherapies: emerging treatment strategies adapted to the tumor microenvironment. Sci. Transl. Med. 2022;14 PubMed
Bardia A., Hurvitz S.A., Tolaney S.M., Loirat D., Punie K., Oliveira M., et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 2021;384:1529–1541. PubMed
Rugo H.S., Bardia A., Marme F., Cortes J., Schmid P., Loirat D., et al. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPiCS-02): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2023;402:1423–1433. PubMed